The Mariana subduction structure is a hot topic in ocean-ocean subduction zone research,and its subduction mechanism has attracted wide attention from experts and scholars in China and abroad.Based on the multi-channe...The Mariana subduction structure is a hot topic in ocean-ocean subduction zone research,and its subduction mechanism has attracted wide attention from experts and scholars in China and abroad.Based on the multi-channel seismic data of survey line MGL1204 in the Mariana fore-arc and DSDP ocean drilling data,this paper studies the development and evolution characteristics of the structure and strata in the Cenozoic Mariana fore-arc sedimentary basin.The Cenozoic strata are divided into six seismic sequences,with the possible era of each seismic sequence discerned,and the relationship between fault development and earthquakes analyzed.The episodic activity of the volcanic chain of the Mariana island arc is thought to control the tectonic and stratigraphic development pattern of the Cenozoic sedimentary basin in the fore-arc.Between 16°N-19°N and 146°E-151°E,the maximum thickness of the sedimentary center of the Cenozoic fore-arc sedimentary basin in Mariana is about 2360 m.Normal faults are developed in the area and some broke to the seabed,indicating that the Mariana island arc is still in the post-arc expansion stage.The application of multi-channel seismic sections in structural and stratigraphic evolution study is an important means to elucidating the Mariana subduction mechanism.展开更多
The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of ig...The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of igneous rocks. We preliminarily defined the coupling relation between magnetic anomalies and igneous rock bodies. Some igneous complexes were also recognized by using multi-channel seismic and drilling data. We identified various intrusive and extrusive igneous rock bodies, such as stocks, sills, dikes, laccoliths and volcanic edifice relics through seismic facies analysis. We also forecasted the distribution characteristics of igneous complexes. More than fifty hypabyssal intrusions and volcanic relics were delineated based on the interpretation of magnetic anomaly and dense intersecting multi-channel seismic data. It is an important supplement to regional geology and basin evolution research. Spatial matching relations between igneous rock belts and fractures document that extensional N-E and N-NE-trending deep fractures may be effective pathways for magma intrusion. These fractures formed under the influence of regional extension during the Meso- Cenozoic after the Indosinian movement. Isotopic ages and crosscutting relations between igneous rock bodies and the surrounding bedded sedimentary strata both indicate that igneous activities might have initiated during the Late Jurassic, peaked in the Early Cretaceous, gradually weakened in the Late Cretaceous, and continued until the Miocene. Combined with previous studies, it is considered that the Meso-Cenozoic igneous activities, especially the intensive igneous activity of the Early Cretaceous, are closely associated with the subduction of the Paleo-Pacific Plate.展开更多
The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with ...The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic. A new deep seismic reflection profile conducted in the eastern Sichuan fold belt(ESFB) discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block. In order to prove the speculation, we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho, which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts. Combined with the geochronology and Aeromagnetic anomalies, we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line. The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.展开更多
Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bo...Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bonin-Mariana(IBM)arc.However,until now,studies of the geological,geophysical,and tectonic evolution of the PVB have been rare.In this study,we obtained in situ trace element and major element compositions of minerals in basalts collected from two sites in the southern part of the PVB.The results reveal that the basalts from site CJ09-63 were likely formed via~10%partial melting of spinel-garnet lherzolite,while the basalts from site CJ09-64 were likely formed via 15%–25%partial melting of garnet lherzolite.The order of mineral crystallization for the basalts from site CJ09-64 was olivine,spinel,clinopyroxene,and plagioclase,while the plagioclase in the basalts from site CJ09-63 crystallized earlier than the clinopyroxene.Using a plagioclase-liquid hygrometer and an olivine-liquid oxybarometer,we determined that the basalts in this study have high H2O contents and oxygen fugacities,suggesting that the magma source of the Parece Vela basalts was affected by subduction components,which is consistent with the trace element composition of whole rock.展开更多
During the Late Cretaceous in the Eastern Mediterranean, the northern branch of the southern Neotethys was closed by multiple northward subductions. Of these, the most northerly located subduction created the Baskil c...During the Late Cretaceous in the Eastern Mediterranean, the northern branch of the southern Neotethys was closed by multiple northward subductions. Of these, the most northerly located subduction created the Baskil continental arc at around 82–84 Ma. The more southerly and intra-oceanic subduction, on the other hand, produced an arc-basin system,the Yüksekova Complex, as early as the late Cenomanian–early Turonian. The abundant and relatively well-studied basaltic rocks of this complex were intruded by dykes, sills and small stocks of felsic–intermediate rocks, not previously studied in detail. The intrusives collected from five different localities in the Elazig region of eastern Turkey are all subalkaline, with low Nb/Y values. Most of them have been chemically classified as rhyodacites/dacites, whereas a small number appear to be andesites. In normal mid-ocean-ridge basalt(N-MORB)-normalised plots, the intrusives are characterised by relative enrichments in Th and La over Nb, Zr, Hf, Ti and high field strength elements(HREEs), indicating their derivation from a subduction-modified source. While their relatively high, positive εN d(i) values(+6.4 and +7.2) might suggest a depleted mantle source for their ultimate origin, somewhat radiogenic Pb values indicate a sedimentary contribution to the source of the rocks. The overall geochemical characteristics indicate their generation in an oceanic arc setting. The zircon U-Pb Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) data obtained from five felsic-intermediate rock samples yielded intrusion dates of 80–88 Ma. This suggests that the Elazig oceanic arc-related intrusives are slightly younger than those of the Yüksekova arc-basin system, but coeval with the Baskil continental arc. However, the felsic–intermediate intrusives show different geochemical characteristics(oceanic arc-type, with a lack of crustal contamination)to those of the Baskil continental arc. This indicates that these two igneous systems are unrelated and likely developed in different tectonic settings. This, in turn, supports a geodynamic model in which the northern strand of the southern Neotethys was consumed by multiple northward subductions.展开更多
Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little ...Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.展开更多
Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with ...Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressivdy toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Kiida-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous rampingrapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-present compression-rapid uplift and strong subsidence, when the basin- and mountain-forming processes were simultaneously controlled by north-vergent thrust propagation and compression. The authors summarize the processes as the “ramping-detachment-compression basin- and mountain-forming dynamic model”. The basin-range tectonics was initiated in the Late Jurassic, the Miocene-Pliocene were a major transition period for the basin- and mountain-forming mechanism and the terminal early Pleistocene tectonic movement in the main laid a foundation for the basin-and-mountain tectonic framework in the West Kunlun-southern Tarim basin margin.展开更多
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, es...Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.展开更多
The 26 December 2004 earthquake off Sumatra coast focused world attention on the Sunda arc subduction zone.Bangladesh is along the strike of and within a rupture-distance from that enormous M-9.3 earthquake. This coun...The 26 December 2004 earthquake off Sumatra coast focused world attention on the Sunda arc subduction zone.Bangladesh is along the strike of and within a rupture-distance from that enormous M-9.3 earthquake. This country is situated where the India-Sunda subduction zone rises from oceanic depths to subaerial exposure as a result of incipient continent collision where the trench meets the huge sediment展开更多
缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动...缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动特征进行了分析.基于改进的剪切-粘贴法(generalized Cut And Paste,gCAP)新获得了28个ML3.0~5.0地震事件的震源机制解等震源参数信息,并结合全球矩心矩张量(Global Centroid Moment Tensor,GCMT)目录及其他已发表的震源机制解资料,应用区域阻尼应力场反演算法得到了研究区的应力分布状态,综合探讨了研究区域深浅部构造关系及孕震机制.研究表明印度板块持续的斜向俯冲控制着印缅山脉和中央盆地的地震活动,但其影响向东逐渐减弱,浅部最大主应力方向的变化可能反映的是局部应力集中或者是相对短时间内的应力调整,不同区域的地震活动差异主要受区域构造及其浅部断层的影响,中央盆地下方的两个邻区之间的最大主应力轴的偏转可能与深部活动相关.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.91858215 and 91958206)the National Key Research and Development Program of China(Grant No.2018YFC1405901)the Key Research and Development Program of Shandong Province(Grant No.2019GHY112019)。
文摘The Mariana subduction structure is a hot topic in ocean-ocean subduction zone research,and its subduction mechanism has attracted wide attention from experts and scholars in China and abroad.Based on the multi-channel seismic data of survey line MGL1204 in the Mariana fore-arc and DSDP ocean drilling data,this paper studies the development and evolution characteristics of the structure and strata in the Cenozoic Mariana fore-arc sedimentary basin.The Cenozoic strata are divided into six seismic sequences,with the possible era of each seismic sequence discerned,and the relationship between fault development and earthquakes analyzed.The episodic activity of the volcanic chain of the Mariana island arc is thought to control the tectonic and stratigraphic development pattern of the Cenozoic sedimentary basin in the fore-arc.Between 16°N-19°N and 146°E-151°E,the maximum thickness of the sedimentary center of the Cenozoic fore-arc sedimentary basin in Mariana is about 2360 m.Normal faults are developed in the area and some broke to the seabed,indicating that the Mariana island arc is still in the post-arc expansion stage.The application of multi-channel seismic sections in structural and stratigraphic evolution study is an important means to elucidating the Mariana subduction mechanism.
基金financially supported by The National Special Project for Marine Geology(DD20160147)the National Basic Research Program of China(973 program+1 种基金 Grant No.2013CB429701)the National Natural Science Foundation of China(Grant No.41210005)
文摘The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of igneous rocks. We preliminarily defined the coupling relation between magnetic anomalies and igneous rock bodies. Some igneous complexes were also recognized by using multi-channel seismic and drilling data. We identified various intrusive and extrusive igneous rock bodies, such as stocks, sills, dikes, laccoliths and volcanic edifice relics through seismic facies analysis. We also forecasted the distribution characteristics of igneous complexes. More than fifty hypabyssal intrusions and volcanic relics were delineated based on the interpretation of magnetic anomaly and dense intersecting multi-channel seismic data. It is an important supplement to regional geology and basin evolution research. Spatial matching relations between igneous rock belts and fractures document that extensional N-E and N-NE-trending deep fractures may be effective pathways for magma intrusion. These fractures formed under the influence of regional extension during the Meso- Cenozoic after the Indosinian movement. Isotopic ages and crosscutting relations between igneous rock bodies and the surrounding bedded sedimentary strata both indicate that igneous activities might have initiated during the Late Jurassic, peaked in the Early Cretaceous, gradually weakened in the Late Cretaceous, and continued until the Miocene. Combined with previous studies, it is considered that the Meso-Cenozoic igneous activities, especially the intensive igneous activity of the Early Cretaceous, are closely associated with the subduction of the Paleo-Pacific Plate.
基金the National Natural Science Foundation of China(Nos.41104056,41374093,40974060,41574093)basic scientific research fund of IG,CAGS(J1119)
文摘The Sichuan basin is the main part of the middle-upper Yangtze block, which has been experienced a long-term tectonic evolution since Archean. The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic. A new deep seismic reflection profile conducted in the eastern Sichuan fold belt(ESFB) discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block. In order to prove the speculation, we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho, which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts. Combined with the geochronology and Aeromagnetic anomalies, we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line. The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.
基金supported by Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2022QNLM050201-3)the National Natural Science Foundations of China(Grants Nos.41230960,41322036,41776070)+1 种基金Aoshan Talents Program of Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM2015ASTPES16)Taishan Scholarship from Shandong Province.
文摘Since the Early Cenozoic,the Philippine Sea Plate(PSP)has undergone a complex tectonic evolution.During this period the Parece Vela Basin(PVB)was formed by seafloor spreading in the back-arc region of the proto-Izu-Bonin-Mariana(IBM)arc.However,until now,studies of the geological,geophysical,and tectonic evolution of the PVB have been rare.In this study,we obtained in situ trace element and major element compositions of minerals in basalts collected from two sites in the southern part of the PVB.The results reveal that the basalts from site CJ09-63 were likely formed via~10%partial melting of spinel-garnet lherzolite,while the basalts from site CJ09-64 were likely formed via 15%–25%partial melting of garnet lherzolite.The order of mineral crystallization for the basalts from site CJ09-64 was olivine,spinel,clinopyroxene,and plagioclase,while the plagioclase in the basalts from site CJ09-63 crystallized earlier than the clinopyroxene.Using a plagioclase-liquid hygrometer and an olivine-liquid oxybarometer,we determined that the basalts in this study have high H2O contents and oxygen fugacities,suggesting that the magma source of the Parece Vela basalts was affected by subduction components,which is consistent with the trace element composition of whole rock.
基金the Firat University Scientific Research Foundation (Grant No. FUBAP-MF.12.41) for providing financial support for this research。
文摘During the Late Cretaceous in the Eastern Mediterranean, the northern branch of the southern Neotethys was closed by multiple northward subductions. Of these, the most northerly located subduction created the Baskil continental arc at around 82–84 Ma. The more southerly and intra-oceanic subduction, on the other hand, produced an arc-basin system,the Yüksekova Complex, as early as the late Cenomanian–early Turonian. The abundant and relatively well-studied basaltic rocks of this complex were intruded by dykes, sills and small stocks of felsic–intermediate rocks, not previously studied in detail. The intrusives collected from five different localities in the Elazig region of eastern Turkey are all subalkaline, with low Nb/Y values. Most of them have been chemically classified as rhyodacites/dacites, whereas a small number appear to be andesites. In normal mid-ocean-ridge basalt(N-MORB)-normalised plots, the intrusives are characterised by relative enrichments in Th and La over Nb, Zr, Hf, Ti and high field strength elements(HREEs), indicating their derivation from a subduction-modified source. While their relatively high, positive εN d(i) values(+6.4 and +7.2) might suggest a depleted mantle source for their ultimate origin, somewhat radiogenic Pb values indicate a sedimentary contribution to the source of the rocks. The overall geochemical characteristics indicate their generation in an oceanic arc setting. The zircon U-Pb Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) data obtained from five felsic-intermediate rock samples yielded intrusion dates of 80–88 Ma. This suggests that the Elazig oceanic arc-related intrusives are slightly younger than those of the Yüksekova arc-basin system, but coeval with the Baskil continental arc. However, the felsic–intermediate intrusives show different geochemical characteristics(oceanic arc-type, with a lack of crustal contamination)to those of the Baskil continental arc. This indicates that these two igneous systems are unrelated and likely developed in different tectonic settings. This, in turn, supports a geodynamic model in which the northern strand of the southern Neotethys was consumed by multiple northward subductions.
基金The National Natural Science Foundation of China under contract No.42072181。
文摘Studies in the northern South China Sea(SCS)basement remain important for understanding the evolution of the Southeast Asian continental margin.Due to a thick cover of sediments and scarce borehole penetration,little is known about the age and tectonic affinity of this basement.In this study,an integrated study of zircon U-Pb geochronology,Hf isotopes,and whole-rock major and trace elements on seven basement granitoids from seven boreholes of Qiongdongnan Basin has been carried out.New zircon U-Pb results for these granitoids present middle-late Permian((270.0±1.2)Ma;(253±3.4)Ma),middle to late Triassic((246.2±3.4)Ma;(239.3±0.96)Ma;(237.9±0.99)Ma;(228.9±1.0)Ma)and Late Cretaceous ages((120.6±0.6)Ma).New data from this study,in combination with the previous dataset,indicates that granitoid ages in northern SCS basement vary from 270 Ma to 70.5 Ma,with three age groups of 270–196 Ma,162–142 Ma,and 137–71 Ma,respectively.Except for the late Paleozoic-Mesozoic rocks in the basement of the northern SCS,a few old zircon grains with the age of(2708.1±17)Ma to(2166.6±19)Ma provide clues to the existence of the pre-Proterozoic components.The geochemical signatures indicate that the middle Permian-early Cretaceous granitoids from the Qiongdongnan Basin are I-type granites formed in a volcanic arc environment,which were probably related to the subduction of the Paleo-Pacific Plate.
文摘Analysis of the deformation structures in the West Kunlun-Tarim basin-range junction belt indicates that sediments in the southwestern Tarim depression were mainly derived from the West Kunlun Mountains and that with time the region of sedimentation extended progressivdy toward the north. Three north-underthrusting (subducting), steep-dipping, high-velocity zones (bodies) are recognized at depths, which correspond to the central West Kunlun junction belt (bounded by the Kiida-Kaxtax fault on the north and Bulungkol-Kangxiwar fault on the south), Quanshuigou fault belt (whose eastward extension is the Jinshajiang fault belt) and Bangong Co-Nujiang fault belt. The geodynamic process of the basin-range junction belt generally proceeded as follows: centering around the magma source region (which largely corresponds with the Karatag terrane at the surface), the deep-seated material flowed and extended from below upward and to all sides, resulting in strong deformation (mainly extension) in the overlying lithosphere and even the upper mantle, appearance of extensional stress perpendicular to the strike of the orogenic belt in the thermal uplift region or at the top of the mantle diapir and localized thickening of the sedimentary cover (thermal subsidence in the upper crust). Three stages of the basin- and mountain-forming processes in the West Kunlun-southern Tarim basin margin may be summarized: (1) the stage of Late Jurassic-Early Cretaceous rampingrapid uplift and rapid subsidence, when north-directed thrust propagation and south-directed intracontinental subduction, was the dominant mechanism for basin- and mountain-building processes; (2) the stage of Late Cretaceous-Paleogene deep-level detachment-slow uplift and homogeneous subsidence, when the dominant mechanism for the basin- and mountain-forming processes was detachment (subhorizontal north-directed deep-level ductile shear) and its resulting lateral propagation of deep material; and (3) the stage of Neogene-present compression-rapid uplift and strong subsidence, when the basin- and mountain-forming processes were simultaneously controlled by north-vergent thrust propagation and compression. The authors summarize the processes as the “ramping-detachment-compression basin- and mountain-forming dynamic model”. The basin-range tectonics was initiated in the Late Jurassic, the Miocene-Pliocene were a major transition period for the basin- and mountain-forming mechanism and the terminal early Pleistocene tectonic movement in the main laid a foundation for the basin-and-mountain tectonic framework in the West Kunlun-southern Tarim basin margin.
基金the National Natural Science Foundation of China(grant 19972072)Project of the Open Laboratory of Continental Geodynamics of the Ministry of Land and Resources(grant 9812) Stat Project 305 rgrant 96—915—06—04).
文摘Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.
文摘The 26 December 2004 earthquake off Sumatra coast focused world attention on the Sunda arc subduction zone.Bangladesh is along the strike of and within a rupture-distance from that enormous M-9.3 earthquake. This country is situated where the India-Sunda subduction zone rises from oceanic depths to subaerial exposure as a result of incipient continent collision where the trench meets the huge sediment
文摘缅甸作为全球受地震灾害影响甚为严重的国家之一,因缺乏区域地震观测资料,对其孕震构造环境的详细分析研究十分不足.本文利用中缅联合地球物理探测(CMGSMO)项目在缅甸布设的密集宽频带地震台阵观测数据,对印缅山脉至中央盆地的地震活动特征进行了分析.基于改进的剪切-粘贴法(generalized Cut And Paste,gCAP)新获得了28个ML3.0~5.0地震事件的震源机制解等震源参数信息,并结合全球矩心矩张量(Global Centroid Moment Tensor,GCMT)目录及其他已发表的震源机制解资料,应用区域阻尼应力场反演算法得到了研究区的应力分布状态,综合探讨了研究区域深浅部构造关系及孕震机制.研究表明印度板块持续的斜向俯冲控制着印缅山脉和中央盆地的地震活动,但其影响向东逐渐减弱,浅部最大主应力方向的变化可能反映的是局部应力集中或者是相对短时间内的应力调整,不同区域的地震活动差异主要受区域构造及其浅部断层的影响,中央盆地下方的两个邻区之间的最大主应力轴的偏转可能与深部活动相关.