The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow fi...The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.展开更多
In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is st...In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.展开更多
To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are show...To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.展开更多
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution di...A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.展开更多
The subgrid-scale effects on particle motion were investigated in forced isotropic turbulence by DNS and priorLES methods.In the DNS field,the importance of Kolmogorov scaling to preferential accumulation was validate...The subgrid-scale effects on particle motion were investigated in forced isotropic turbulence by DNS and priorLES methods.In the DNS field,the importance of Kolmogorov scaling to preferential accumulation was validated by comparing the radial distribution functions under various particle Stokes numbers.The prior-LES fields were generated by filtering the DNS data.The subgrid-scale Stokes number(StSGS)is a useful tool for determining the effects of subgrid-scale eddies on particle motion.The subgrid-scale eddies tend to accumulate particles with StSGSb 1 and disperse particles with 1 b StSGSb 10.For particles with StSGS?1,the effects of subgrid-scale eddies on particle motion can be neglected.In order to restore the subgrid-scale effects,the Langevin-type stochastic model with optimized parameters was adopted in this study.This model is effective for the particles with StSGS N 1 while has an adverse impact on the particles with StSGSb 1.The results show that the Langevin-type stochastic model tends to smooth the particle distribution in the isotropic turbulence.展开更多
A mixed subgrid-scale(SGS) model based on coherent structures and temporal approximate deconvolution(MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is...A mixed subgrid-scale(SGS) model based on coherent structures and temporal approximate deconvolution(MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation(LES) of turbulent dragreducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence(FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation(DNS) results. Compared with the LES results using the temporal approximate deconvolution model(TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number.For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives.展开更多
The subgrid-scale(SGS)kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies.In this paper,a new SGS eddy-visc...The subgrid-scale(SGS)kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies.In this paper,a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely,instead of using the SGS kinetic energy equation.Using the infinite series expansion and reserving the first term of the expanded term,we obtain an approximated SGS kinetic energy,which has a high correlation with the real SGS kinetic energy.Then,the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation.The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure.The new model is tested in the compressible turbulent channel flow.From the a posterior tests,we know that the new model can precisely predict the mean velocity,the Reynolds stress,the mean temperature and turbulence intensities,etc.展开更多
We review the previous attempts of rational subgrid-scale (SGS) modelling by employing theKolmogorov equation of filtered quantities. Aiming at explaining and solving the underlyingproblems in these models, we ...We review the previous attempts of rational subgrid-scale (SGS) modelling by employing theKolmogorov equation of filtered quantities. Aiming at explaining and solving the underlyingproblems in these models, we also introduce the recent methodological investigations for therational SGS modelling technique by defining the terms of assumption and restriction. Thesemethodological works are expected to provide instructive criterions for not only the rational SGSmodelling, but also other types of SGS modelling practices.展开更多
The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang(SG)series laser facilities and the National Ignition Facility(NIF)experiments published in the past few years.The an...The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang(SG)series laser facilities and the National Ignition Facility(NIF)experiments published in the past few years.The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20%deviation.The 20%deviation might be caused by the diversity in hohlraum parameters,such as material,laser pulse,gas filling density,etc.In addition,the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model.This work confirms the value of the energy balance model for ignition target design and experimental data assessment,and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created,meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.展开更多
针对如何有效利用智能电网产生的海量数据问题,文中开发了基于国家电网公司企业统一信息模型(State grid-common information model,SG-CIM)的企业数据库模型系统,实现了系统之间的信息交互,电网的可视化操作,对电网相关业务进行分析管...针对如何有效利用智能电网产生的海量数据问题,文中开发了基于国家电网公司企业统一信息模型(State grid-common information model,SG-CIM)的企业数据库模型系统,实现了系统之间的信息交互,电网的可视化操作,对电网相关业务进行分析管理,包括故障抢修,业务处理,电力分析计算等。首先,基于企业的业务领域不同,将其划分为12个主题域,并细致化每个主题的属性;其次,针对企业实际情况,分析企业数据库的设计需求,并对其进行具体的设计;最后采用Enterprise Architect软件对电网企业数据库进行UML建模,并将开发的系统应用于电网公司,实际应用效果验证了开发系统的有效性以及可靠性。展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51139007, 51079151, 51079152)Research Fundfor the Doctoral Program of Higher Education of China (Grant No. 0100008110012)
文摘The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
基金the National Natural Science Foundation of China (Grant 11772128)the Fundamental Research Funds for the Central Universities (Grants 2017MS022 and 2018ZD09).
文摘In previous attempts of rational subgrid-scale (SGS) modeling by employing the Kolmogorov equation of filtered (KEF) quantities, it was necessary to assume that the resolved-scale second-order structure function is stationary. Forced isotropic turbulence is often used as a framework for establishing and validating such SGS models based on stationary restrictions, for it generates statistical stationary samples. However, traditional forcing method at low wavenumbers cannot provide an analytic form of forcing term for a complete KEF in physical space, which has been illustrated to be essential in the modeling of such SGS models. Thus, an alternative forcing method giving an analytic forcing term in physical space is needed for rational SGS modeling. Giving an analytic linear driving term in physical space, linearly forced isotropic turbulence should be considered an ideal theoretical framework for rational SGS modeling. In this paper, we demonstrate the feasibility of establishing a rational SGS model with stationary restriction based on linearly forced isotropic turbulence. The performance of this rational SGS model is validated. We, therefore, propose the use of linearly forced isotropic turbulence as a complement to free-decaying isotropic turbulence and low-wavenumber forced isotropic turbulence for SGS model validations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11572025,11202013 and 51420105008
文摘To shed light on the subgrid-seale (SGS) modeling methodology of nonlinear systems such as the Navier-Stokes turbulence, we define the concepts of assumption and restriction in the modeling procedure, which are shown by generalized derivation of three general mathematical constraints for different combinations of restrictions. These constraints are verified numerically in a one-dimensional nonlinear advection equation. This study is expected to inspire future research on the SGS modeling methodology of nonlinear systems.
文摘A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
基金Supported by the National Natural Science Foundation of China(51761125011).
文摘The subgrid-scale effects on particle motion were investigated in forced isotropic turbulence by DNS and priorLES methods.In the DNS field,the importance of Kolmogorov scaling to preferential accumulation was validated by comparing the radial distribution functions under various particle Stokes numbers.The prior-LES fields were generated by filtering the DNS data.The subgrid-scale Stokes number(StSGS)is a useful tool for determining the effects of subgrid-scale eddies on particle motion.The subgrid-scale eddies tend to accumulate particles with StSGSb 1 and disperse particles with 1 b StSGSb 10.For particles with StSGS?1,the effects of subgrid-scale eddies on particle motion can be neglected.In order to restore the subgrid-scale effects,the Langevin-type stochastic model with optimized parameters was adopted in this study.This model is effective for the particles with StSGS N 1 while has an adverse impact on the particles with StSGSb 1.The results show that the Langevin-type stochastic model tends to smooth the particle distribution in the isotropic turbulence.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2011M500652)the National Natural Science Foundation of China(Grant Nos.51276046 and 51206033)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)
文摘A mixed subgrid-scale(SGS) model based on coherent structures and temporal approximate deconvolution(MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation(LES) of turbulent dragreducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence(FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation(DNS) results. Compared with the LES results using the temporal approximate deconvolution model(TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number.For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives.
基金supported by the National Key Research and Development Program of China(Grant Nos.2020YFA0711800,2019YFA0405302)NSFC Projects(Grant Nos.12072349,91852203)+1 种基金National Numerical Windtunnel Project,Science Challenge Project(Grant No.TZ2016001)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC01000000).
文摘The subgrid-scale(SGS)kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies.In this paper,a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely,instead of using the SGS kinetic energy equation.Using the infinite series expansion and reserving the first term of the expanded term,we obtain an approximated SGS kinetic energy,which has a high correlation with the real SGS kinetic energy.Then,the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation.The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure.The new model is tested in the compressible turbulent channel flow.From the a posterior tests,we know that the new model can precisely predict the mean velocity,the Reynolds stress,the mean temperature and turbulence intensities,etc.
基金supported by the National Natural Science Foundation of China (11772032, 11572025, and 51420105008)
文摘We review the previous attempts of rational subgrid-scale (SGS) modelling by employing theKolmogorov equation of filtered quantities. Aiming at explaining and solving the underlyingproblems in these models, we also introduce the recent methodological investigations for therational SGS modelling technique by defining the terms of assumption and restriction. Thesemethodological works are expected to provide instructive criterions for not only the rational SGSmodelling, but also other types of SGS modelling practices.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11405011 and 11475033).
文摘The basic energy balance model is applied to analyze the hohlraum energetics data from the Shenguang(SG)series laser facilities and the National Ignition Facility(NIF)experiments published in the past few years.The analysis shows that the overall hohlraum energetics data are in agreement with the energy balance model within 20%deviation.The 20%deviation might be caused by the diversity in hohlraum parameters,such as material,laser pulse,gas filling density,etc.In addition,the NIF's ignition target designs and our ignition target designs given by simulations are also in accordance with the energy balance model.This work confirms the value of the energy balance model for ignition target design and experimental data assessment,and demonstrates that the NIF energy is enough to achieve ignition if a 1D spherical radiation drive could be created,meanwhile both the laser plasma instabilities and hydrodynamic instabilities could be suppressed.
文摘针对如何有效利用智能电网产生的海量数据问题,文中开发了基于国家电网公司企业统一信息模型(State grid-common information model,SG-CIM)的企业数据库模型系统,实现了系统之间的信息交互,电网的可视化操作,对电网相关业务进行分析管理,包括故障抢修,业务处理,电力分析计算等。首先,基于企业的业务领域不同,将其划分为12个主题域,并细致化每个主题的属性;其次,针对企业实际情况,分析企业数据库的设计需求,并对其进行具体的设计;最后采用Enterprise Architect软件对电网企业数据库进行UML建模,并将开发的系统应用于电网公司,实际应用效果验证了开发系统的有效性以及可靠性。