Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recogn...Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.展开更多
We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero...We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.展开更多
本文提出一种跨被试的深度神经网络识别方法,应对运动想象脑电信号的非线性、非平稳特性.该方法首先计算协方差矩阵均值,将不同被试者样本集的协方差对齐至单位矩阵,提升样本的被试间泛化性.然后,将对齐后的样本输入至卷积神经网络中,...本文提出一种跨被试的深度神经网络识别方法,应对运动想象脑电信号的非线性、非平稳特性.该方法首先计算协方差矩阵均值,将不同被试者样本集的协方差对齐至单位矩阵,提升样本的被试间泛化性.然后,将对齐后的样本输入至卷积神经网络中,通过留一被试交叉验证法,构建跨被试的运动想象脑电信号识别方法.在BCI Competition IV dataset 2b公开数据集上进行实验,结果表明,新的方法在该数据集上取得了高的识别性能,且测试场景中的时间复杂度与现有方法相同.展开更多
文摘Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.
文摘We introduce the triple crossing number, a variation of the crossing number, of a graph, which is the minimal number of crossing points in all drawings of the graph with only triple crossings. It is defined to be zero for planar graphs, and to be infinite for non-planar graphs which do not admit a drawing with only triple crossings. In this paper, we determine the triple crossing numbers for all complete multipartite graphs which include all complete graphs.
文摘本文提出一种跨被试的深度神经网络识别方法,应对运动想象脑电信号的非线性、非平稳特性.该方法首先计算协方差矩阵均值,将不同被试者样本集的协方差对齐至单位矩阵,提升样本的被试间泛化性.然后,将对齐后的样本输入至卷积神经网络中,通过留一被试交叉验证法,构建跨被试的运动想象脑电信号识别方法.在BCI Competition IV dataset 2b公开数据集上进行实验,结果表明,新的方法在该数据集上取得了高的识别性能,且测试场景中的时间复杂度与现有方法相同.