A large number of scientific works, from ancient times to the present, have been dedicated to the search for “bricks” that make up the foundations of the material world. Justification of quantum of space parameters ...A large number of scientific works, from ancient times to the present, have been dedicated to the search for “bricks” that make up the foundations of the material world. Justification of quantum of space parameters of the Universe is a complicated scientific problem, as its reliable information is unknown. Therefore, errors may appear in it, which must be corrected in a timely manner. In the latest works from this sphere, the quanta of the space of the Universe are replaced by hexahedral prisms instead of balls, which solves the problem of their dense packing. However, the mistake was the deformation of these prisms. <strong>The purpose of this work</strong> is to eliminate this deficiency. Its scientific novelty is the substantiation of the specified of refined parameters of the quantum of the space of the Universe on the basis of strict scientific provisions and the physical laws of nature. The solution to this problem is an urgent and important scientific and applied task, since it develops knowledge about the quantum foundations of the material world and the Universe as a whole. <strong>Research methods which used in this work:</strong> The performed work is based on the methods of deduction and induction in the research of the material world based on the application of the well-known reliable laws of physics and the general principles of the development of the theory of knowledge. Other research methods are still unknown, since the work performed is associated with new scientific discoveries, the search for which is difficult to formalize by known technique methods. <strong>Results and their discussion:</strong> The work is based on the hypothesis that was put forward that at the quantum-mechanical level of the material world, a longitudinal quantum shift by the wavelength <em>λ<sub>G</sub></em> and a transverse quantum shift by <em>λ<sub>G</sub></em> of the quantum of the Universe space is carried out in the time interval <em>T<sub>G</sub></em>, which can be found on the basis of the Heisenberg uncertainty principle. The parameters obtained made it possible to clarify the length and shape of quanta of the space of the Universe, as well as the conditions for its rotation. It was also taken into account that the hexagonal prism of the circular quantum of the space of the Universe is composed of 6 trihedral prisms of elementary quanta of space. So she can be formed by 3 elements of real quark with a common top in the center of the prism, with the formation of 3 elements of virtual quark between them. In this case, a transverse shift by <em>λ<sub>G</sub></em> and a rotation of quarks by an angle of 2π/6 radians is performed without energy loss, only due to transformations of their real and virtual states. The totality of all the above transformations of quanta of the space of the Universe does not contradict previously known physical laws and regularities, which serves as the basis for confirming the scientific hypothesis put forward.展开更多
文摘A large number of scientific works, from ancient times to the present, have been dedicated to the search for “bricks” that make up the foundations of the material world. Justification of quantum of space parameters of the Universe is a complicated scientific problem, as its reliable information is unknown. Therefore, errors may appear in it, which must be corrected in a timely manner. In the latest works from this sphere, the quanta of the space of the Universe are replaced by hexahedral prisms instead of balls, which solves the problem of their dense packing. However, the mistake was the deformation of these prisms. <strong>The purpose of this work</strong> is to eliminate this deficiency. Its scientific novelty is the substantiation of the specified of refined parameters of the quantum of the space of the Universe on the basis of strict scientific provisions and the physical laws of nature. The solution to this problem is an urgent and important scientific and applied task, since it develops knowledge about the quantum foundations of the material world and the Universe as a whole. <strong>Research methods which used in this work:</strong> The performed work is based on the methods of deduction and induction in the research of the material world based on the application of the well-known reliable laws of physics and the general principles of the development of the theory of knowledge. Other research methods are still unknown, since the work performed is associated with new scientific discoveries, the search for which is difficult to formalize by known technique methods. <strong>Results and their discussion:</strong> The work is based on the hypothesis that was put forward that at the quantum-mechanical level of the material world, a longitudinal quantum shift by the wavelength <em>λ<sub>G</sub></em> and a transverse quantum shift by <em>λ<sub>G</sub></em> of the quantum of the Universe space is carried out in the time interval <em>T<sub>G</sub></em>, which can be found on the basis of the Heisenberg uncertainty principle. The parameters obtained made it possible to clarify the length and shape of quanta of the space of the Universe, as well as the conditions for its rotation. It was also taken into account that the hexagonal prism of the circular quantum of the space of the Universe is composed of 6 trihedral prisms of elementary quanta of space. So she can be formed by 3 elements of real quark with a common top in the center of the prism, with the formation of 3 elements of virtual quark between them. In this case, a transverse shift by <em>λ<sub>G</sub></em> and a rotation of quarks by an angle of 2π/6 radians is performed without energy loss, only due to transformations of their real and virtual states. The totality of all the above transformations of quanta of the space of the Universe does not contradict previously known physical laws and regularities, which serves as the basis for confirming the scientific hypothesis put forward.