Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where ...Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.展开更多
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine c...Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.展开更多
The upper part of the continental slope in the northern South China Sea is prone to submarine landslide disasters,especially in submarine canyons.This work studies borehole sediments,discusses geotechnical properties ...The upper part of the continental slope in the northern South China Sea is prone to submarine landslide disasters,especially in submarine canyons.This work studies borehole sediments,discusses geotechnical properties of sediments,and evaluates sediment stability in the study area.The results show that sediment shear strength increases with increasing depth,with good linear correlation.Variations in shear strength of sediments with burial depth have a significantly greater rate of change in the canyon head and middle part than those in the canyon bottom.For sediments at the same burial depth,shear strength gradually increased and then decreased from the head to the bottom of the canyon,and has no obvious correlation with the slope angle of the sampling site.Under static conditions,the critical equilibrium slope angle of the sediments in the middle part of the canyon is 10°to 12°,and the critical slope angle in the head and the bottom of the canyon is 7°.The results indicate that potential landslide hazard areas are mainly distributed in distinct spots or narrow strips on the canyon walls where there are high slope angles.展开更多
The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of ...The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient (along the canyon axis) of 3°(〈1 000 m) and 0.7°(〈1 000 m). The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough. Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope. The whole canyon system consists of three parts: the canyon, the channel and the fan. Slumps and slides often develop in the upper part of canyon where the water depth is less than 1 000 m, and the turbidities usually developed on the fan. The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons. Canyon-fans are often associated with small angle progradational reflection. Most canyon-fans and levees were transversely cut by active normal faults with NEE- SWW trending that are coupled to the modern extension of the Okinawa Trough. According to the age of formation of canyon-fans and sediments incised by canyons, we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.展开更多
High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwestern South China Sea.The Huaguang Canyon with a NW orientat...High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwestern South China Sea.The Huaguang Canyon with a NW orientation is 140 km in length,and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach.The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon.This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma).The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections,indicating that this ancient submarine canyon was filled with coarse-grained sediments.The sediment was principally scourced from the Xisha carbonate platform.In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon)in the Qiongdongnan Basin,the Huaguang Canyon displays later formation time,smaller width and length,and single sediment supply.The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas,and the muddy fillings in the Huaguang Canyon have been identified as regional caps.Therefore,the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea.The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.展开更多
High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwest South China Sea.The Huaguang Canyon with a NW orientation...High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwest South China Sea.The Huaguang Canyon with a NW orientation is 140 km in length,and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach.The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon.This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma).The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections,indicating that this ancient submarine canyon was filled with coarse-grained sediments.The sediment was principally scourced from the Xisha carbonate platform.In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon)in the Qiongdongnan Basin,the Huaguang Canyon displays later formation time,smaller width and length,and single sediment supply.The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas,and the muddy fillings in Huaguang Canyon have been identified as regional caps.Therefore,Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea.Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.展开更多
Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multib...Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multibeam bathymetric data and two-dimensional(2D)seismic profiles,we identified and mapped the submarine canyon-channel system along the middle segment of West Mariana Ridge in the Philippine Sea.These submarine canyon-channels show a main W-E orientation at depth of 2000–4500 m.They are approximately 72–128 km in length and 1.3–15 km in width,and their canyon heads are adjacent to the seamounts with several branches.The upper reaches of submarine canyon-channels are characterized by deeply incised,narrow,V-shaped thalwegs,suggesting the powerful erosion of gravity flows.The distinguished sediment waves are suggested to be resulted from the interaction of turbidity currents and seafloor.Our observations demonstrate that gravity flows originated from the collapses of seamount flanks plays a vital role in developing the submarine canyonchannel system along the West Mariana Ridge.This work provides better understanding of erosion,transport,and deposition of sediments from subducting ridges to deep-water basins,and also new insights into the origin and evolution of submarine canyon-channel systems along subducting ridges.展开更多
High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta...High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta,the Galabor Canyon.Attribute maps of specific horizons allow documenting the changing morphologies and infill lithologies of two main branches of the canyon through two stages of activity separated by a reference horizon dated at 0.99 Ma based on well calibration.At the upper slope,growth faults dissect the canyon heads,the catchment of which encroaches a network of valleys incised on the outer shelf.The canyon fill is composed of muddy channels and mass-transport deposits,largely derived from the collapse of canyon walls and sand-rich bodies forming a tract sourced by shelf-edge deltas at the outlet of the incised valleys.High-density turbiditic processes likely control the distribution of sand bodies along the canyon,ranging from tributary fans on the upper slope to 6 km-wide meander belts on the middle slope.The sandy deposits accumulate in minibasins formed along the canyon path,downstream of the subsiding hanging wall of the growth faults and upstream of shale ridges that damp the flow in the canyon.These results show that canyons can be major targets for sand reservoir exploration on the upper slope of large muddy deltas.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
The coastal region around Sri Lanka have been subjected to considerable changes since Pleistocene and one remarkable observation is the occurrence of submarine canyons in eight places of the Island. The literature say...The coastal region around Sri Lanka have been subjected to considerable changes since Pleistocene and one remarkable observation is the occurrence of submarine canyons in eight places of the Island. The literature says that the head of the largest canyon at Trincomalee is situated 200 m from the shore. The objective of this paper is to highlight the extension of the canyon structure by studying the recent geotechnical investigations around the Mahaweli delta. A number of boreholes were constructed for groundwater investigations around the Mahaweli river floodplains and the other boreholes were constructed to determine the depth to the bedrock for a bridge foundation at the river outfall. The depth to the bedrock at the river outfall is more than 75 m and decreases towards upstream. The shape of the bedrock below the thick fluvial sediments in the studied area indicates the head of canyon should be marked more than 35 km from the shore towards inland. It is obvious that the submarine canyon at Trincomalee is only a part of a very large canyon. The thick fluvial sedimentary deposit over this canyon within the land is a result of erosion of bedrock along a shear zone or fault and then the rise of sea level in recent times.展开更多
Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 t...Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.展开更多
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate...Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression...A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.展开更多
Under global climate change,water flow and related nutrient biogeochemistry in the Arctic are changing at an unprecedented rate,and potentially affect nutrient cycling in the Arctic Ocean.However,nutrient fluxes via s...Under global climate change,water flow and related nutrient biogeochemistry in the Arctic are changing at an unprecedented rate,and potentially affect nutrient cycling in the Arctic Ocean.However,nutrient fluxes via submarine groundwater discharge(SGD)are potentially important yet poorly understood in the Arctic.Here we quantified that nutrient fluxes through radium-derived SGD were three orders of magnitude higher than those from the local river and constituted 25%-96%of the total nutrient inputs into the Kongsfjorden.These large groundwater nutrient fluxes with high NIN/DIP molar ratio(average 99)may change the biomass and community structure of phytoplankton.Meanwhile,combining other SGD study cases around the Arctic region,SGD rates tend to increase over the past three decades,possibly on account of the effects of global warming.The SGD-derived nutrient may cause the increase of net primary productivity in the Arctic Ocean.The results will provide important basic data for land-ocean interactions in the typical fjord of the Arctic under the influence of global warming.展开更多
Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies.Based on data from several broadband shallow-sea type ocean bottom seismometers(SOBSs)deployed in the Bohai Se...Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies.Based on data from several broadband shallow-sea type ocean bottom seismometers(SOBSs)deployed in the Bohai Sea and north Yellow Sea,this paper analyzes the submarine seismic ambient noise characteristics.It explores the theory,technology,method and application of the submarine seismic ambient noise imaging using the single-point horizontal and vertical spectral ratio method(HVSR).The observations yield the following results:1)Submarine seismic ambient noise has consistent and constant energy,making it an appropriate passive seismic source for submarine high-frequency surface wave investigation.2)Using the HVSR approach,a single threecomponent OBS could differentiate between the basement and sediments.Array seismic observation could be utilized to extract the frequency dispersion curve and invert it to obtain the velocity structure for more accurate stratification.3)The SOBS we use is suitable for submarine surface wave exploration.4)Tomography results with greater resolution and deeper penetration could be obtained by combining active and passive sources in a simultaneous inversion of the HVSR and frequency dispersion curve.Seamless land-to-ocean seismic research can be accomplished with submarine seismic ambient noise imaging technologies.展开更多
Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the...Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the occurrence of layered rock masses makes it more complex,with obvious anisotropic mechanical properties.This study proposes a comprehensive method for evaluating the stability of layered rock spillway tunnels in a hydropower station in an alpine canyon.First,the failure criterion and mechanical model of layered rock masses considering the anisotropy induced by the bedding plane and the true triaxial stress regime were established;an inversion theory and calculation procedure for in-situ stress in alpine canyon areas were then introduced.Finally,by using a self-developed numerical tool,i.e.CASRock,the stability of the layered rock spillway tunnel in a hydropower station was numerically analyzed.The results show that,affected by geological structure and stratigraphic lithology,there is significant differentiation in the in-situ stress in alpine canyons,with horizontal tectonic stress as the main factor.The occurrence of layered rock masses in the region has a significant impact on the stability of surrounding rock,and the angle between the bedding strike and the tunnel axis as well as the bedding dip both exert a significant influence on the failure characteristics of the surrounding rock.展开更多
Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. Th...Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.展开更多
基金The National Natural Science Foundation of China under contract Nos 40576033 and 40406013
文摘Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.
基金The National Key R&D Program of China under contract NO.2017YFC1405504the National Natural Science Foundation of China under contract No.41470648+1 种基金the Public Science and Technology Research Funds Projects of Ocean under contract No.201205003the National Program on Global Change and Air-Sea Interaction,SOA under contract No.631 GASI-GEOGE-01
文摘Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.
基金The National Natural Science Foundation of China under contract No.41706065the National Program on Global Change and Air-Sea Interaction of China under contract No.GASI-GEOGE-05+1 种基金the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes under contract No.2015G08the NSFC-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606401
文摘The upper part of the continental slope in the northern South China Sea is prone to submarine landslide disasters,especially in submarine canyons.This work studies borehole sediments,discusses geotechnical properties of sediments,and evaluates sediment stability in the study area.The results show that sediment shear strength increases with increasing depth,with good linear correlation.Variations in shear strength of sediments with burial depth have a significantly greater rate of change in the canyon head and middle part than those in the canyon bottom.For sediments at the same burial depth,shear strength gradually increased and then decreased from the head to the bottom of the canyon,and has no obvious correlation with the slope angle of the sampling site.Under static conditions,the critical equilibrium slope angle of the sediments in the middle part of the canyon is 10°to 12°,and the critical slope angle in the head and the bottom of the canyon is 7°.The results indicate that potential landslide hazard areas are mainly distributed in distinct spots or narrow strips on the canyon walls where there are high slope angles.
基金The National Natural Science Foundation of China under contract Nos 40576033 and 40406013the Marine Science Foundation of State Oceanic Administration under contract No.2006306
文摘The Yithi submarine canyons, composed of four canyons less than 60 km in length, are located on the narrowest part of the East China Sea (ECS) slope. They extend from the shelf break at 160 m down to water depth of 1 500 m with an average gradient (along the canyon axis) of 3°(〈1 000 m) and 0.7°(〈1 000 m). The sinuosity of the canyons ranges form 1.02 to 1.14 and their pathways extend radially from the shelf break to the axis of the Okinawa Trough. Structural and evolution pattern of the Yithi canyons are mainly controlled by sediment mass-movements and turbidity current and similar with that of the canyons in Ebro continental slope. The whole canyon system consists of three parts: the canyon, the channel and the fan. Slumps and slides often develop in the upper part of canyon where the water depth is less than 1 000 m, and the turbidities usually developed on the fan. The scale of turbidites becomes smaller and their inner structures become more regular towards the ends of the canyons. Canyon-fans are often associated with small angle progradational reflection. Most canyon-fans and levees were transversely cut by active normal faults with NEE- SWW trending that are coupled to the modern extension of the Okinawa Trough. According to the age of formation of canyon-fans and sediments incised by canyons, we can infer that the Yithi canyons were formed since the middle the Medio-Pleistocene.
基金The National Scientific Foundation of China under contract No.41876054the National Science and Technology Major Project“the evaluations of deepwater oil and gas geological conditions and targets in Zhongjian area of the South China Sea”under contract No.2017ZX05026006+2 种基金the CNPC Science and Technology Major Projects under contract No.2019A-1009&2019D-4309the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA13010101the National Natural Science Foundation of China under contract No.41706054
文摘High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwestern South China Sea.The Huaguang Canyon with a NW orientation is 140 km in length,and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach.The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon.This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma).The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections,indicating that this ancient submarine canyon was filled with coarse-grained sediments.The sediment was principally scourced from the Xisha carbonate platform.In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon)in the Qiongdongnan Basin,the Huaguang Canyon displays later formation time,smaller width and length,and single sediment supply.The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas,and the muddy fillings in the Huaguang Canyon have been identified as regional caps.Therefore,the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea.The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.
基金The National Natural Scientific Foundation of China under contract No.41876054the National Science and Technology Major Project“The evaluations of deepwater oil and gas geological conditions and targets in Zhongjian area of the South China Sea”under contract No.2017ZX05026006the China National Petroleum Corporation(CNPC)Science and Technology Major Projects under contract Nos 2019A-1009 and 2019D-4309.
文摘High-resolution multichannel seismic data enables the discovery of a previous,undocumented submarine canyon(Huaguang Canyon)in the Qiongdongnan Basin,northwest South China Sea.The Huaguang Canyon with a NW orientation is 140 km in length,and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach.The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon.This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma).The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections,indicating that this ancient submarine canyon was filled with coarse-grained sediments.The sediment was principally scourced from the Xisha carbonate platform.In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon)in the Qiongdongnan Basin,the Huaguang Canyon displays later formation time,smaller width and length,and single sediment supply.The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas,and the muddy fillings in Huaguang Canyon have been identified as regional caps.Therefore,Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea.Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.
基金Supported by the National Natural Science Foundation of China(No.91958211)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020000)+1 种基金the Laoshan Laboratory Project(No.LSKJ202203503)the Key Deployment Project of Center for Ocean Mega-Research of Science,Chinese Academy of Sciences(No.COMS2019Q10).Dr.Wei LI is funded by the CAS Pioneer Hundred-Talents Program。
文摘Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multibeam bathymetric data and two-dimensional(2D)seismic profiles,we identified and mapped the submarine canyon-channel system along the middle segment of West Mariana Ridge in the Philippine Sea.These submarine canyon-channels show a main W-E orientation at depth of 2000–4500 m.They are approximately 72–128 km in length and 1.3–15 km in width,and their canyon heads are adjacent to the seamounts with several branches.The upper reaches of submarine canyon-channels are characterized by deeply incised,narrow,V-shaped thalwegs,suggesting the powerful erosion of gravity flows.The distinguished sediment waves are suggested to be resulted from the interaction of turbidity currents and seafloor.Our observations demonstrate that gravity flows originated from the collapses of seamount flanks plays a vital role in developing the submarine canyonchannel system along the West Mariana Ridge.This work provides better understanding of erosion,transport,and deposition of sediments from subducting ridges to deep-water basins,and also new insights into the origin and evolution of submarine canyon-channel systems along subducting ridges.
基金supported by the Petroleum Technology Develop-ment Fund,Nigeria,TotalEnergies Exploration and Production department,France,and the Society of Exploration Geophysicists。
文摘High-resolution 3D seismic data analysis was integrated with a calibrated well and biostratigraphy data to present the first overview of a buried Pleistocene canyon system on the upper slope of the eastern Niger Delta,the Galabor Canyon.Attribute maps of specific horizons allow documenting the changing morphologies and infill lithologies of two main branches of the canyon through two stages of activity separated by a reference horizon dated at 0.99 Ma based on well calibration.At the upper slope,growth faults dissect the canyon heads,the catchment of which encroaches a network of valleys incised on the outer shelf.The canyon fill is composed of muddy channels and mass-transport deposits,largely derived from the collapse of canyon walls and sand-rich bodies forming a tract sourced by shelf-edge deltas at the outlet of the incised valleys.High-density turbiditic processes likely control the distribution of sand bodies along the canyon,ranging from tributary fans on the upper slope to 6 km-wide meander belts on the middle slope.The sandy deposits accumulate in minibasins formed along the canyon path,downstream of the subsiding hanging wall of the growth faults and upstream of shale ridges that damp the flow in the canyon.These results show that canyons can be major targets for sand reservoir exploration on the upper slope of large muddy deltas.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
文摘The coastal region around Sri Lanka have been subjected to considerable changes since Pleistocene and one remarkable observation is the occurrence of submarine canyons in eight places of the Island. The literature says that the head of the largest canyon at Trincomalee is situated 200 m from the shore. The objective of this paper is to highlight the extension of the canyon structure by studying the recent geotechnical investigations around the Mahaweli delta. A number of boreholes were constructed for groundwater investigations around the Mahaweli river floodplains and the other boreholes were constructed to determine the depth to the bedrock for a bridge foundation at the river outfall. The depth to the bedrock at the river outfall is more than 75 m and decreases towards upstream. The shape of the bedrock below the thick fluvial sediments in the studied area indicates the head of canyon should be marked more than 35 km from the shore towards inland. It is obvious that the submarine canyon at Trincomalee is only a part of a very large canyon. The thick fluvial sedimentary deposit over this canyon within the land is a result of erosion of bedrock along a shear zone or fault and then the rise of sea level in recent times.
文摘Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands.
基金The National Natural Science Foundation of China under contract No.42372154。
文摘Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171285)。
文摘A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline.
基金The National Natural Science Foundation of China under contract Nos 41976040,41676188,42106043 and 42006152the Innovation Base for Estuarine and Coastal Water Security 2.0 from the Ministry of Science and Technology of P.R.China under contract No.BP0820020.
文摘Under global climate change,water flow and related nutrient biogeochemistry in the Arctic are changing at an unprecedented rate,and potentially affect nutrient cycling in the Arctic Ocean.However,nutrient fluxes via submarine groundwater discharge(SGD)are potentially important yet poorly understood in the Arctic.Here we quantified that nutrient fluxes through radium-derived SGD were three orders of magnitude higher than those from the local river and constituted 25%-96%of the total nutrient inputs into the Kongsfjorden.These large groundwater nutrient fluxes with high NIN/DIP molar ratio(average 99)may change the biomass and community structure of phytoplankton.Meanwhile,combining other SGD study cases around the Arctic region,SGD rates tend to increase over the past three decades,possibly on account of the effects of global warming.The SGD-derived nutrient may cause the increase of net primary productivity in the Arctic Ocean.The results will provide important basic data for land-ocean interactions in the typical fjord of the Arctic under the influence of global warming.
基金supported by the Guangzhou Basic and Applied Basic Research Project (2023A04J0243)Natural Science Foundation of China (42106078)Dedicated Fund for Marine Economic Development in Guangdong Province (GDNRC[2023]40)。
文摘Submarine seismic ambient noise imaging combines current marine and on-land seismic detection technologies.Based on data from several broadband shallow-sea type ocean bottom seismometers(SOBSs)deployed in the Bohai Sea and north Yellow Sea,this paper analyzes the submarine seismic ambient noise characteristics.It explores the theory,technology,method and application of the submarine seismic ambient noise imaging using the single-point horizontal and vertical spectral ratio method(HVSR).The observations yield the following results:1)Submarine seismic ambient noise has consistent and constant energy,making it an appropriate passive seismic source for submarine high-frequency surface wave investigation.2)Using the HVSR approach,a single threecomponent OBS could differentiate between the basement and sediments.Array seismic observation could be utilized to extract the frequency dispersion curve and invert it to obtain the velocity structure for more accurate stratification.3)The SOBS we use is suitable for submarine surface wave exploration.4)Tomography results with greater resolution and deeper penetration could be obtained by combining active and passive sources in a simultaneous inversion of the HVSR and frequency dispersion curve.Seamless land-to-ocean seismic research can be accomplished with submarine seismic ambient noise imaging technologies.
基金supported by the National Natural Science Foundation of China(Grant No.52125903).
文摘Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the occurrence of layered rock masses makes it more complex,with obvious anisotropic mechanical properties.This study proposes a comprehensive method for evaluating the stability of layered rock spillway tunnels in a hydropower station in an alpine canyon.First,the failure criterion and mechanical model of layered rock masses considering the anisotropy induced by the bedding plane and the true triaxial stress regime were established;an inversion theory and calculation procedure for in-situ stress in alpine canyon areas were then introduced.Finally,by using a self-developed numerical tool,i.e.CASRock,the stability of the layered rock spillway tunnel in a hydropower station was numerically analyzed.The results show that,affected by geological structure and stratigraphic lithology,there is significant differentiation in the in-situ stress in alpine canyons,with horizontal tectonic stress as the main factor.The occurrence of layered rock masses in the region has a significant impact on the stability of surrounding rock,and the angle between the bedding strike and the tunnel axis as well as the bedding dip both exert a significant influence on the failure characteristics of the surrounding rock.
基金This article was supported by State Tenth Five-Year Plan Project (2001BA510B0105) and the Project for Pioneering New Knowledge from Chinese Academy of Sciences (KZCX2-SW-319).
文摘Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.