Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19-...Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19--20 g/L. The effects of DO concentration, sludge floc size distribution on SND were studied. Test results suggested that SND was successfully performed in the membrane bioreactor (MBR) and about 70% total nitrogen removal efficiency was achieved when DO concentration was set to 0.2-- 0.3 mg/L. The main mechanisms governing SND were the suitable sludge floc size and the low DO concentration which was caused by low oxygen transfer rate with such a high MLSS concentration in the MBR. In the meantime, phosphor removal was also studied with polymer ferric sulfate (PFS) addition and 14 mg/L dosage of PFS was proper for the MBR to remove phosphor. PFS addition also benefited the MBR operation owing to its reduction of extracellular polymer substances (EPS) of mixed liquor.展开更多
基金The Hi-Tech Research and Development Program (863) of China (No. 2002AA601220)
文摘Simultaneous nitrification and denitrification (SND) effect and phosphor removal were investigated in a one-staged aerobic submerged membrane bioreactor on pilot-scale with mixed liquor suspended solids (MLSS) 19--20 g/L. The effects of DO concentration, sludge floc size distribution on SND were studied. Test results suggested that SND was successfully performed in the membrane bioreactor (MBR) and about 70% total nitrogen removal efficiency was achieved when DO concentration was set to 0.2-- 0.3 mg/L. The main mechanisms governing SND were the suitable sludge floc size and the low DO concentration which was caused by low oxygen transfer rate with such a high MLSS concentration in the MBR. In the meantime, phosphor removal was also studied with polymer ferric sulfate (PFS) addition and 14 mg/L dosage of PFS was proper for the MBR to remove phosphor. PFS addition also benefited the MBR operation owing to its reduction of extracellular polymer substances (EPS) of mixed liquor.