期刊文献+
共找到223,431篇文章
< 1 2 250 >
每页显示 20 50 100
Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by submerged cavitation water jet 被引量:1
1
作者 Wenjun Zhou Meng Zhao +3 位作者 Bo Liu Youzhi Ma Youzhi Zhang Xuanjun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期559-572,共14页
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac... A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms. 展开更多
关键词 submerged cavitation water jet Hydroxyl-terminated polybutadiene propellant Breaking characteristics Failure modes
下载PDF
Numerical study of submerged bending vegetation under unidirectional flow
2
作者 Pei-pei Zhang Yi-qing Gong +2 位作者 Ken Vui Chua Jie Dai Jing-qiao Mao 《Water Science and Engineering》 EI CAS CSCD 2024年第1期92-100,共9页
Submerged vegetation commonly grows and plays a vital role in aquatic ecosystems,but it is also regarded as a barrier to the passing flow.Numerical simulations of flow through and over submerged vegetation were carrie... Submerged vegetation commonly grows and plays a vital role in aquatic ecosystems,but it is also regarded as a barrier to the passing flow.Numerical simulations of flow through and over submerged vegetation were carried out to investigate the effect of vegetation density on flow field.Numerical simulations were computationally set up to replicate flume experiments,in which vegetation was mimicked with flexible plastic strips.The fluid-structure interaction between flow and flexible vegetation was solved by coupling the two modules of the COMSOL packages.Two cases with different vegetation densities were simulated,and the results were successfully validated against the experimental data.The contours of the simulated time-averaged streamwise velocity and Reynolds stress were extracted to highlight the differences in mean and turbulent flow statistics.The turbulence intensity was found to be more sensitive to vegetation density than the time-averaged velocity.The developing length increased with the spacing between plants.The snapshots of the bending vegetation under instantaneous velocity and vorticity revealed that flexible vegetation responded to the effects of eddies in the shear layer by swaying periodically.The first two rows of vegetation suffered stronger approaching flow and were prone to more streamlined postures.In addition,the origin of tip vortices was investigated via the distribution of vorticity.The results reveal the variation of flow properties with bending submerged vegetation and provide useful reference for optimizationofrestorationprojects. 展开更多
关键词 Computational fluid dynamics Fluid-structure interaction TURBULENCE Flexible and submerged vegetation
下载PDF
Experimental and Three-Dimensional Numerical Simulation of Phenomena Induced by Submerged Oblique Jet Scouring
3
作者 Hao Chen Xianbin Teng +2 位作者 Faxin Zhu Zhibin Zhang Jie Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1799-1821,共23页
Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium cond... Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0°to 30°,and the characteristics of the scour hole in equilibrium conditions were investigated accordingly.The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15°and 20°.Moreover,the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles.Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that this stress is influenced by both the resultant force and the jet impingement surface area.It reaches its maximum value when the jet is vertical,decreases rapidly as the jet starts to tilt,then increases slightly,and decreases again significantly when the angle exceeds 20°. 展开更多
关键词 submerged jet jet angle experimental study numerical simulation bed shear stress
下载PDF
Numerical Analysis of the Influence of the Impinging Distance on the Scouring Efficiency of Submerged Jets
4
作者 Hao Chen Xianbin Teng +3 位作者 Zhibin Zhang Faxin Zhu Jie Wang Zhaohao Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第2期429-445,共17页
Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this tec... Water jet technology is widely used in submerged buried pipes as a non-traditional trenching process,often invol-ving a complex sediment response.An important adjustable and influential engineering variable in this technol-ogy is represented by the impinging distance.In this study,the FLOW-3D software was used to simulate the jet scouring of sand beds in a submerged environment.In particular,four sets of experimental conditions were con-sidered to discern the relationship between the maximum scour depth and mass and the impinging distance.As shown by the results,a critical impinging distance h0 exists by which the static scour depth can be maximized;the scour mass ratio between dynamic and static conditions decreases as the impinging distance increases.Moreover,the profile contours are similar when the erosion parameter Ec is in the range 0.35<Ec<2.Empirical equations applicable for predicting the jet trenching contour under both dynamic and static scour modes are also provided in this study. 展开更多
关键词 submerged jet impinging distance numerical simulation scour depth scour profile
下载PDF
Debris Fan Produced by Failure of Canyon-Blocking Pyroclastic Flows
5
作者 Michael L. Cummings 《Journal of Water Resource and Protection》 CAS 2024年第5期328-360,共33页
Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 t... Ash-rich pyroclastic flows from the cataclysmic eruption of Mount Mazama (~7700 yr. B. P.), Cascade volcanic arc, Oregon, entered and blocked the narrow, bedrock-lined canyon of the Williamson River approximately 35 to 44 km from the source volcano. The blockage impounded a body of water which then released producing four stratigraphic units in the downstream debris fan. The four stratigraphic units are a boulder core comprised of locally sourced bedrock boulders and three sand-rich units including a fine-grained sand unit, a sandy pumice gravel (±basalt/hydrovolcanic tuff) unit, and a pumice pebble-bearing, crystal-rich sand unit. Hand-drilled auger holes up to ~1.6 m deep were used to obtain samples of the sand-rich units. Units were delimited using surface and down-hole observations, composition and texture, estimated density, statistical parameters of grain size, and vertical and lateral distribution of properties. Overtopping followed by rapid incision into the ash-rich pyroclastic flows progressively cleared the canyon, but a bedrock knickpoint near the head of the canyon limited the volume of debris available for transport to about 0.04 km<sup>3</sup> to 0.08 km<sup>3</sup>. Co-deposition of bedrock boulders and lithic-rich sand was followed by rapid deposition with minimal reworking of remobilized pyroclastics. Continued draining of the impounded lake sent hyperconcentrated flows onto the debris fan depositing pumice-rich gravels that graded upward to crystal-rich sands. 展开更多
关键词 Outburst Flood Mount Mazama Debris Fan Canyon Blockage Pyroclastic flows
下载PDF
Verification and Validation of High-Resolution Inviscid and Viscous Conical Nozzle Flows
6
作者 Luciano K.Araki Rafael B.de R.Borges +1 位作者 Nicholas Dicati P.da Silva Chi-Wang Shu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期533-549,共17页
Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g... Capturing elaborated flow structures and phenomena is required for well-solved numerical flows.The finite difference methods allow simple discretization of mesh and model equations.However,they need simpler meshes,e.g.,rectangular.The inverse Lax-Wendroff(ILW)procedure can handle complex geometries for rectangular meshes.High-resolution and high-order methods can capture elaborated flow structures and phenomena.They also have strong mathematical and physical backgrounds,such as positivity-preserving,jump conditions,and wave propagation concepts.We perceive an effort toward direct numerical simulation,for instance,regarding weighted essentially non-oscillatory(WENO)schemes.Thus,we propose to solve a challenging engineering application without turbulence models.We aim to verify and validate recent high-resolution and high-order methods.To check the solver accuracy,we solved vortex and Couette flows.Then,we solved inviscid and viscous nozzle flows for a conical profile.We employed the finite difference method,positivity-preserving Lax-Friedrichs splitting,high-resolution viscous terms discretization,fifth-order multi-resolution WENO,ILW,and third-order strong stability preserving Runge-Kutta.We showed the solver is high-order and captured elaborated flow structures and phenomena.One can see oblique shocks in both nozzle flows.In the viscous flow,we also captured a free-shock separation,recirculation,entrainment region,Mach disk,and the diamond-shaped pattern of nozzle flows. 展开更多
关键词 HIGH-RESOLUTION COMPRESSIBLE NAVIER-STOKES Free-shock separation Nozzle flow
下载PDF
Application of Thermodynamic Database to Corrosion of ZrO_(2) Containing Submerged Entry Nozzle in Steel Continuous Casting Process
7
作者 In-Ho JUNG 《China's Refractories》 CAS 2024年第2期10-15,共6页
The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase d... The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented. 展开更多
关键词 thermodynamic database ZrO_(2)containing submerged entry nozzle continous casting
下载PDF
Depth-Guided Vision Transformer With Normalizing Flows for Monocular 3D Object Detection
8
作者 Cong Pan Junran Peng Zhaoxiang Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期673-689,共17页
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t... Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts. 展开更多
关键词 Monocular 3D object detection normalizing flows Swin Transformer
下载PDF
A Novel Model for the Prediction of Liquid Film Thickness Distribution in Pipe Gas-Liquid Flows
9
作者 Yubo Wang Yanan Yu +1 位作者 Qiming Wang Anxun Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1993-2006,共14页
A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two... A model is proposed for liquid film profile prediction in gas-liquid two-phase flow,which is able to provide the film thickness along the circumferential direction and the pressure gradient in the flow direction.A two-fluid model is used to calculate both gas and liquid phases’flow characteristics.The secondary flow occurring in the gas phase is taken into account and a sailing boat mechanism is introduced.Moreover,energy conservation is applied for obtaining the liquid film thickness distribution along the circumference.Liquid film thickness distribution is calculated accordingly for different cases;its values are compared with other models and available experimental data.As a result,the newly proposed model is tested and good performances are demonstrated.The liquid film thickness distribution in small pipes and inclined pipes is also studied,and regime transition is revealed by liquid film profile evolution.The observed inflection point demonstrates that the liquid film thickness decreases steeply along the circumference,when the circle angle ranges between 30°and 50°for gas-liquid stratified flow with small superficial velocities. 展开更多
关键词 Film thickness secondary flow void fraction pressure gradient regime transition
下载PDF
THE NONLINEAR STABILITY OF PLANE PARALLEL SHEAR FLOWS WITH RESPECT TO TILTED PERTURBATIONS
10
作者 许兰喜 关芳芳 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1036-1045,共10页
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc... The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise. 展开更多
关键词 plane parallel shear flows energy method energy functional nonlinear stability Reynolds number
下载PDF
Fixed-Time Gradient Flows for Solving Constrained Optimization: A Unified Approach
11
作者 Xinli Shi Xiangping Xu +1 位作者 Guanghui Wen Jinde Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1849-1864,共16页
The accelerated method in solving optimization problems has always been an absorbing topic.Based on the fixedtime(FxT)stability of nonlinear dynamical systems,we provide a unified approach for designing FxT gradient f... The accelerated method in solving optimization problems has always been an absorbing topic.Based on the fixedtime(FxT)stability of nonlinear dynamical systems,we provide a unified approach for designing FxT gradient flows(FxTGFs).First,a general class of nonlinear functions in designing FxTGFs is provided.A unified method for designing first-order FxTGFs is shown under Polyak-Łjasiewicz inequality assumption,a weaker condition than strong convexity.When there exist both bounded and vanishing disturbances in the gradient flow,a specific class of nonsmooth robust FxTGFs with disturbance rejection is presented.Under the strict convexity assumption,Newton-based FxTGFs is given and further extended to solve time-varying optimization.Besides,the proposed FxTGFs are further used for solving equation-constrained optimization.Moreover,an FxT proximal gradient flow with a wide range of parameters is provided for solving nonsmooth composite optimization.To show the effectiveness of various FxTGFs,the static regret analyses for several typical FxTGFs are also provided in detail.Finally,the proposed FxTGFs are applied to solve two network problems,i.e.,the network consensus problem and solving a system linear equations,respectively,from the perspective of optimization.Particularly,by choosing component-wisely sign-preserving functions,these problems can be solved in a distributed way,which extends the existing results.The accelerated convergence and robustness of the proposed FxTGFs are validated in several numerical examples stemming from practical applications. 展开更多
关键词 CONSENSUS constrained optimization disturbance rejection linear equations fixed-time gradient flow(FxTGF).
下载PDF
Fiber Bundle Topology Optimization for Surface Flows
12
作者 Yongbo Deng Weihong Zhang +2 位作者 Jihong Zhu Yingjie Xu Jan G Korvink 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期236-264,共29页
This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern ... This paper presents a topology optimization approach for the surface flows on variable design domains.Via this approach,the matching between the pattern of a surface flow and the 2-manifold used to define the pattern can be optimized,where the 2-manifold is implicitly defined on another fixed 2-manifold named as the base manifold.The fiber bundle topology optimization approach is developed based on the description of the topological structure of the surface flow by using the differential geometry concept of the fiber bundle.The material distribution method is used to achieve the evolution of the pattern of the surface flow.The evolution of the implicit 2-manifold is realized via a homeomorphous map.The design variable of the pattern of the surface flow and that of the implicit 2-manifold are regularized by two sequentially implemented surface-PDE filters.The two surface-PDE filters are coupled,because they are defined on the implicit 2-manifold and base manifold,respectively.The surface Navier-Stokes equations,defined on the implicit 2-manifold,are used to describe the surface flow.The fiber bundle topology optimization problem is analyzed using the continuous adjoint method implemented on the first-order Sobolev space.Several numerical examples have been provided to demonstrate this approach,where the combination of the viscous dissipation and pressure drop is used as the design objective. 展开更多
关键词 Fiber bundle Topology optimization 2-MANIFOLD Surface flow Material distribution method Porous medium model
下载PDF
Stochastic Analysis and Modeling of Velocity Observations in Turbulent Flows
13
作者 Evangelos Rozos Jorge Leandro Demetris Koutsoyiannis 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期45-56,共12页
Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying i... Highly turbulent water flows,often encountered near human constructions like bridge piers,spillways,and weirs,display intricate dynamics characterized by the formation of eddies and vortices.These formations,varying in sizes and lifespans,significantly influence the distribution of fluid velocities within the flow.Subsequently,the rapid velocity fluctuations in highly turbulent flows lead to elevated shear and normal stress levels.For this reason,to meticulously study these dynamics,more often than not,physical modeling is employed for studying the impact of turbulent flows on the stability and longevity of nearby structures.Despite the effectiveness of physical modeling,various monitoring challenges arise,including flow disruption,the necessity for concurrent gauging at multiple locations,and the duration of measurements.Addressing these challenges,image velocimetry emerges as an ideal method in fluid mechanics,particularly for studying turbulent flows.To account for measurement duration,a probabilistic approach utilizing a probability density function(PDF)is suggested to mitigate uncertainty in estimated average and maximum values.However,it becomes evident that deriving the PDF is not straightforward for all turbulence-induced stresses.In response,this study proposes a novel approach by combining image velocimetry with a stochastic model to provide a generic yet accurate description of flow dynamics in such applications.This integration enables an approach based on the probability of failure,facilitating a more comprehensive analysis of turbulent flows.Such an approach is essential for estimating both short-and long-term stresses on hydraulic constructions under assessment. 展开更多
关键词 Smart modeling Turbulent flows Data analysis Stochastic analysis Image velocimetry
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
14
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 Two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Exploring the Element Integration of Urban and Rural“Space of Flows”in the Context of Consumption Upgrading:A Case Study of Changsi Village in Anhui Province
15
作者 QIN Shuhua LI Daoyong HE Qilin 《Journal of Landscape Research》 2024年第1期48-50,54,共4页
The mobility and interaction between urban and rural areas are becoming more and more intensive,and their links and exchanges are increasingly closer due to constant flow of factors such as information,capital,personn... The mobility and interaction between urban and rural areas are becoming more and more intensive,and their links and exchanges are increasingly closer due to constant flow of factors such as information,capital,personnel and technology.In this context,the element integration of urban and rural“space of flows”can promote the integrated development of urban and rural areas,improve the consumption environment and experience,and promote the industrial upgrading and technological progress.To realize the element integration of urban and rural“space of flows”,it is necessary to explore and innovate in infrastructure construction,information technology application,industrial cooperation and cultural exchanges.Government departments,enterprises and social organizations also need to work together to give play to their respective advantages and jointly promote the process of element integration of urban and rural“space of flows”. 展开更多
关键词 Consumption upgrading Space of flows Urban and rural integration
下载PDF
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
16
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving Discontinuous Galerkin(DG)method Modified Patankar method
下载PDF
Impacts of monsoon break events in the western North Pacific on the cross-equatorial flows over the Maritime Continent
17
作者 Xiaoxuan Zhao Minghao Bi +2 位作者 Ke Xu Jianqi Sun Riyu Lu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第2期33-38,共6页
本文利用ERA5逐日再分析资料,探讨了1979-2020年间西北太平洋季风中断事件对海洋性大陆越赤道气流的影响.合成结果表明,西北太平洋季风中断事件会造成高,低空越赤道气流减弱,即高层南风异常,低层北风异常,与此相关的环流异常表现为西北... 本文利用ERA5逐日再分析资料,探讨了1979-2020年间西北太平洋季风中断事件对海洋性大陆越赤道气流的影响.合成结果表明,西北太平洋季风中断事件会造成高,低空越赤道气流减弱,即高层南风异常,低层北风异常,与此相关的环流异常表现为西北太平洋高层气旋,低层反气旋的斜压结构。特别的是,西北太平洋季风中断对高空越赤道气流的影响更为显著,92%的季风中断事件都导致高空越赤道气流减弱,而只有70%的事件造成低空越赤道气流减弱,这是由于低空越赤道气流同时还受到赤道中东太平洋海温异常的调控. 展开更多
关键词 西北太平洋夏季风 季风中断 越赤道气流 海洋性大陆
下载PDF
Flow and penetration behavior of submerged side-blown gas 被引量:3
18
作者 Shuai Zhu Qiuyue Zhao +3 位作者 Xiaolong Li Yan Liu Tianci Li Ting’an Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1067-1077,共11页
To assess the widely used submerged side-blowing in pyrometallurgy,a high-speed camera-digital image processing-statistical approach was used to systematically investigate the effects of the gas flow rate,nozzle diame... To assess the widely used submerged side-blowing in pyrometallurgy,a high-speed camera-digital image processing-statistical approach was used to systematically investigate the effects of the gas flow rate,nozzle diameter,and inclination angle on the space-time distribution and penetration behavior of submerged side-blown gas in an air-water system.The results show that the gas motion gradually changes from a bubbling regime to a steady jetting regime and the formation of a complete jet structure as the flow rate increases.When the flow rate is low,a bubble area is formed by large bubbles in the area above the nozzle.When the flow rate and the nozzle diameter are significant,a bubble area is formed by tiny bubbles in the area above the nozzle.The increased inclination angle requires a more significant flow rate to form a complete jet structure.In the sampling time,the dimensionless horizontal and vertical penetration depths are Gaussian distributed.Decreasing the nozzle diameter and increasing the flow rate or inclination angle will increase the distribution range and discreteness.New correlations for a penetration depth with an error of±20%were obtained through dimensional analysis.The dimensionless horizontal penetration depth of an argon-melt system in a 120 t converter calculated by the correlation proposed by the current study is close to the result calculated by a correlation in the literature and a numerical simulation result in the literature. 展开更多
关键词 submerged side-blowing JET high-speed camera image processing dimensional analysis
下载PDF
Effect of Mixed Vegetation of Different Heights on Open Channel Flows
19
作者 Xiaonan Tang Yutong Guan +4 位作者 Ming Li Hanyi Wang Jiaze Cao Suyang Zhang Nanyu Xiao 《Journal of Geoscience and Environment Protection》 2023年第3期305-314,共10页
Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and en... Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and environmental management. Due to the complexity of the vegetated flow, most previous research focuses on the effect of uniformed one-layered vegetation on the flow structure and morphological process. However, less attention was paid to the impact of the mixing vegetation of different heights, which is more realistic and often occurs in natural riverine environments. This paper aims to investigate the effect of mixing three-layered vegetation on flow characteristics, particularly the velocity distrbution, via a novel experiment. Experiments were performed in a titling water flume fully covered with vegetation of three heights (10, 15 and 20 cm) arranged in a staggered pattern, which is partially submerged. Velocities at different positions along a half cross-section were measured using a mini propeller velocimeter. Observed results showed that the velocity has a distinct profile directly behind vegetation and behind the vegetation gap. The overall profile has two distinct reflections about ? below or near the top of short vegetation (h): the velocity remains almost constant in the bottom layer ( h) the velocities directly behind the middle after short vegetation increase much faster than those directly behind the short after tall vegetation. The finding in this study would help river riparian and ecosystem management. . 展开更多
关键词 Rigid Vegetation Mixed-Layered Vegetation RIPARIAN Velocity Distribution submerged Flow Open Channel
下载PDF
Effects of sequential decay on collective flows and nuclear stopping power in heavy-ion collisions at intermediate energies 被引量:1
20
作者 Kui Xiao Peng-Cheng Li +2 位作者 Yong-Jia Wang Fu-Hu Liu Qing-Feng Li 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期175-184,共10页
In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(... In this study, the rapidity distribution, collective flows, and nuclear stopping power in ^(197)Au+^(197)Au collisions at intermediate energies were investigated using the ultrarelativistic quantum molecular dynamics(UrQMD) model with GEMINI++ code. The UrQMD model was adopted to simulate the dynamic evolution of heavy-ion collisions, whereas the GEMINI++ code was used to simulate the decay of primary fragments produced by UrQMD. The calculated results were compared with the INDRA and FOPI experimental data. It was found that the rapidity distribution, collective flows, and nuclear stopping power were affected to a certain extent by the decay of primary fragments, especially at lower beam energies. Furthermore, the experimental data of the collective flows and nuclear stopping power at the investigated beam energies were better reproduced when the sequential decay effect was included. 展开更多
关键词 Heavy-ion collisions Sequential decay effect Collective flow Nuclear stopping power
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部