The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stabil...The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.展开更多
Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the ...Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown. Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal(CK), straw return(SR), and straw burned return(SBR). Compared to CK, long-term SR tended to improve the yield of early season rice(P=0.057), and significantly increased total organic carbon(TOC) and microbial biomass carbon(MBC) in double-cropped rice paddies. While SBR had no effect on TOC, it decreased light fraction organic carbon(LFOC) in early rice and easily oxidizable organic carbon(EOC) in late rice, significantly increased dissolved organic carbon(DOC), and significantly decreased soil p H. These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return. In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice. We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research.展开更多
The input of organic substances(e.g.,rice straw)in rice field soils usually stimulates the production and emission of the greenhouse gas methane(CH4).However,the amount of CH4 derived from the applied rice straw,as we...The input of organic substances(e.g.,rice straw)in rice field soils usually stimulates the production and emission of the greenhouse gas methane(CH4).However,the amount of CH4 derived from the applied rice straw,as well as the response of bacterial and archaeal communities during the methanogenic phase,are poorly understood for different rice field soils.In this study,samples of five different rice soils were amended with 13^C-labeled rice straw(RS)under methanogenic conditions.Immediately after RS addition,the RS-derived CH4 production rates were higher in soils(Uruguay,Fuyang)that possessed a stronger inherent CH4 production potential compared with other soils with lower inherent potentials(Changsha,the Philippines,Vercelli).However,soils with higher inherent potential did not necessarily produce higher amounts of CH4 from the RS applied,or vice versa.Quantitative PCR showed copy numbers of both bacteria and methanogens increased in straw-amended soils.High-throughput sequencing of 16 S rRNA genes showed distinct bacterial communities among the unamended soil samples,which also changed differently in response to RS addition.Nevertheless,RS addition generally resulted in all the rice field soils in a relative increase of primary fermenters belonging to Anaerolineaceae and Ruminococcaceae.Meanwhile,RS addition also generally resulted in a relative increase of Methanosarcinaceae and/or Methanocellaceae.Our results suggest that after RS addition the total amounts of RSderived CH4 are distinct in different rice field soils under methanogenic conditions.Meanwhile,there are potential core bacterial populations that are often involved in primary fermentation of RS under methanogenic conditions.展开更多
Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorptio...Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorption of heavy metals by soil solid phase. Elevation of DOC level due to the direct incorporation of crop residues may lead to enhanced accumulation of toxic metals in crop body grown in polluted farmland. In this study, an incubation experiment and a pot experiment were conducted respectively to investigate the effects of wheat straw incorporation on DOC level, cadmium availability, and Cd accumulation in rice plant, and to establish the relation between Cd solubility and DOC level. A Cd-contaminated rice soil was used and incorporated with different rates (0%, 0.5% and 1%) of wheat straw in both experiments. Results showed that the change pattern of Cd in soil solution was very similar to that of DOC level. Wheat straw addition significantly elevated Cd and DOC level in soil solution while NH4NO3-extrated Cd was not affected. There existed a close linear correlation between soluble Cd and DOC level. Enhanced Cd accumulation in rice plant, grown in a Cd contaminated soil, induced by wheat straw incorporation was observed in this study.展开更多
Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reduc...Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.展开更多
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur...The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.展开更多
[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly ret...[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value.展开更多
In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates tha...Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates that if favorable mulching is supplied properly, it reduces soil temperature and conserves soil moisture in summer, increases soil temperature in winter, keeps soil loose and mellow, depresses weeds, and increases soil organic matter content in vineyard to secure good quality and higher yield even under drought condition.展开更多
基金funded by the National Key Research and Development Program of China (2021YFD1700200)the earmarked fund for China Agriculture Reserch System(CARS-22)the Natural Science Foundation of Jiangsu Province,China (BK20200112)。
文摘The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.
基金supported by the National Key Research and Development Program of China (2017YFD0301601)the China Postdoctoral Science Foundation (2016M600512)+1 种基金the Open Project Program of State Key Laboratory of Rice Biology, Ministry of Science and Technology, China (20190401)the Jiangxi Province Postdoctoral Research Project Preferential Grant, China (2017KY16)。
文摘Long-term straw return is an important carbon source for improving soil organic carbon(SOC) stocks in croplands, and straw removal through burning is also a common practice in open fields in South China. However, the specific effects of long-term rice straw management on SOC fractions, the related enzyme activities and their relationships, and whether these effects differ between crop growing seasons remain unknown. Three treatments with equal nitrogen, phosphorus, and potassium nutrient inputs, including straw/ash and chemical nutrients, were established to compare the effects of straw removal(CK), straw return(SR), and straw burned return(SBR). Compared to CK, long-term SR tended to improve the yield of early season rice(P=0.057), and significantly increased total organic carbon(TOC) and microbial biomass carbon(MBC) in double-cropped rice paddies. While SBR had no effect on TOC, it decreased light fraction organic carbon(LFOC) in early rice and easily oxidizable organic carbon(EOC) in late rice, significantly increased dissolved organic carbon(DOC), and significantly decreased soil p H. These results showed that MBC was the most sensitive indicator for assessing changes of SOC in the double-cropped rice system due to long-term straw return. In addition, the different effects on SOC fraction sizes between SR and SBR were attributed to the divergent trends in most of the soil enzyme activities in the early and late rice that mainly altered DOC, while DOC was positively affected by β-xylosidase in both early and late rice. We concluded that straw return was superior to straw burned return for improving SOC fractions, but the negative effects on soil enzyme activities in late rice require further research.
基金the National Natural Science Foundation of China(41573083)the Construction Program of Biology First-class Discipline in Guizhou(GNYL[2017]009FX1KT09),China+1 种基金the LOEWE center for synthetic microbiology(SYNMIKRO),Germanythe German Research Foundation as part of the ICON consortium(CO 141/4-1)。
文摘The input of organic substances(e.g.,rice straw)in rice field soils usually stimulates the production and emission of the greenhouse gas methane(CH4).However,the amount of CH4 derived from the applied rice straw,as well as the response of bacterial and archaeal communities during the methanogenic phase,are poorly understood for different rice field soils.In this study,samples of five different rice soils were amended with 13^C-labeled rice straw(RS)under methanogenic conditions.Immediately after RS addition,the RS-derived CH4 production rates were higher in soils(Uruguay,Fuyang)that possessed a stronger inherent CH4 production potential compared with other soils with lower inherent potentials(Changsha,the Philippines,Vercelli).However,soils with higher inherent potential did not necessarily produce higher amounts of CH4 from the RS applied,or vice versa.Quantitative PCR showed copy numbers of both bacteria and methanogens increased in straw-amended soils.High-throughput sequencing of 16 S rRNA genes showed distinct bacterial communities among the unamended soil samples,which also changed differently in response to RS addition.Nevertheless,RS addition generally resulted in all the rice field soils in a relative increase of primary fermenters belonging to Anaerolineaceae and Ruminococcaceae.Meanwhile,RS addition also generally resulted in a relative increase of Methanosarcinaceae and/or Methanocellaceae.Our results suggest that after RS addition the total amounts of RSderived CH4 are distinct in different rice field soils under methanogenic conditions.Meanwhile,there are potential core bacterial populations that are often involved in primary fermentation of RS under methanogenic conditions.
文摘Of the factors affecting migration and bioavailability of toxic metals in heavy metal contaminated soil, DOC (dissolved organic carbon) provides binding sites for metal cations and reduces the fixation and adsorption of heavy metals by soil solid phase. Elevation of DOC level due to the direct incorporation of crop residues may lead to enhanced accumulation of toxic metals in crop body grown in polluted farmland. In this study, an incubation experiment and a pot experiment were conducted respectively to investigate the effects of wheat straw incorporation on DOC level, cadmium availability, and Cd accumulation in rice plant, and to establish the relation between Cd solubility and DOC level. A Cd-contaminated rice soil was used and incorporated with different rates (0%, 0.5% and 1%) of wheat straw in both experiments. Results showed that the change pattern of Cd in soil solution was very similar to that of DOC level. Wheat straw addition significantly elevated Cd and DOC level in soil solution while NH4NO3-extrated Cd was not affected. There existed a close linear correlation between soluble Cd and DOC level. Enhanced Cd accumulation in rice plant, grown in a Cd contaminated soil, induced by wheat straw incorporation was observed in this study.
文摘Some electrochemical properties,such as PH,Eh,and voltammetric behavior,of the decomposition products of rice straw and the in eractions of these products with soils were studied.The PH,Eh,and amounts of organic reducing substances changed markedly during the 60-day anaerobic decomposition.pH decreased sharply to pH 5 on the tenth day and then increased gradually to 7 on the 45th day.The amouats of organic reducing substances increased almost synchronously with the fall of redox potential during the first 15 days.The differential pulse voltammetric(dpv) behavior changed not only in the peak current but also in the peak potential.The fractions with apparent molecular weights lower than 200 dations appeared to be active in dpv behavior.The electric charge of organic reducing substances was closely related to the decomposition stage.The 6th day of incubation was the crucial time before and after which the major part of the components was negatively charged and positively charged, respectively.The group with a low apparent molecular weight and a negative charge was the main components responsible for the lower anodic peak potentials.They were oxidized first during the interactions of the organic reducing substances with soils.
基金Supported by the National Key Research and Development Plan Project(2016YFD0300909-04)。
文摘The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.
基金Doctoral Research Start-up Fund Project of Liaoning Province(2019-B-237)National Special Project for the Construction of Modern Agricultural Industrial Technology System(CARS-01-51).
文摘[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value.
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.
文摘Yongzhou often encounters drought condition in July and August. Sometimes no rainfall lasts for 20 to 40 days, causes a great damage to grape production Our four-year rice straw mulching test on vineyard indicates that if favorable mulching is supplied properly, it reduces soil temperature and conserves soil moisture in summer, increases soil temperature in winter, keeps soil loose and mellow, depresses weeds, and increases soil organic matter content in vineyard to secure good quality and higher yield even under drought condition.