期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Needed Minimum Submergence Depth When a Submarine Runs into Typhoon
1
作者 张德宇 《Marine Science Bulletin》 CAS 2003年第2期1-4,共4页
In this paper, the influence depths of all levels of wind power produced waves are reckoned according to the measured swaying degree when a submarine meets with a force 11 strong tropical storm and has to submerge; Th... In this paper, the influence depths of all levels of wind power produced waves are reckoned according to the measured swaying degree when a submarine meets with a force 11 strong tropical storm and has to submerge; Then the minimum submergence depth is given when a submarine is faced with weather systems with force ≥ 6 wind and the swaying degree of less than 12 degree is assured as reference for a submarine working and sailing in big strong winds and waves. 展开更多
关键词 minimum submergence depth SUBMARINE swaying degree
下载PDF
Numerical Analysis on the Effects of Submerged Depth of the Grid and Direction of Incident Wave on Gravity Cage 被引量:12
2
作者 陈昌平 李玉成 +2 位作者 赵云鹏 董国海 桂福坤 《China Ocean Engineering》 SCIE EI 2009年第2期233-250,共18页
In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, m... In this paper, the numerical model of the net cage with the grid mooring system in waves is set up by the lumped mass method and rigid kinematics theory, and then the motion equations of floating system, net system, mooring system, and floaters are solved by the Runge-Kutta fifth-order method. For the verification of the numerical model, a series of physical model tests have been carried out. According to the comparisons between the simulated and experimental results, it can be found that the simulated and experimental results agree well in each condition. Then, the effects of submerged depth of grid and direction of incident wave propagation on hydrodynamic behaviors of the net cage are analyzed. According to the simulated results, it can be found that with the increase of submerged depth of grid, the forces acting on mooring lines and bridle lines increase, while the forces on grid lines decrease; the horizontal motion amplitudes of floating collar decrease obviously, while the vertical motion amplitudes of floating collar change little. When the direction of incident wave propagation changes, forces on mooring lines and motion of net cage also change accordingly. When the propagation direction of incident wave changes from 0° to 45°, forces on the main ropes and bridle ropes increase, while the forces on the grid ropes decrease. With the increasing propagation direction of incident wave, the horizontal amplitude of the forces collar decreases, while the vertical amplitude of the floating collar has little variation. 展开更多
关键词 submerged depth of grid gravity cage physical model test numerical simulation
下载PDF
The Effect of Key Design Parameters on the Global Performance of Submerged Floating Tunnel under Target Wave and Earthquake Excitations 被引量:3
3
作者 Chungkuk Jin MooHyun Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期315-337,共23页
This study presents a practical design strategy for a large-size Submerged Floating Tunnel(SFT)under different target environments through global-performance simulations.A coupled time-domain simulation model for SFT ... This study presents a practical design strategy for a large-size Submerged Floating Tunnel(SFT)under different target environments through global-performance simulations.A coupled time-domain simulation model for SFT is established to check hydro-elastic behaviors under the design random wave and earthquake excitations.The tunnel and mooring lines are modeled with a finite-element line model based on a series of lumped masses connected by axial,bending,and torsional springs,and thus the dynamic/structural deformability of the entire SFT is fully considered.The dummy-connection-mass method and constraint boundary conditions are employed to connect the tunnel and mooring lines in a convenient manner.Wave-and earthquake-induced hydrodynamic forces are evaluated by the Morison equation at instantaneous node positions.Several wave and earthquake conditions are selected to evaluate its global performance and sensitivity at different system parameters.Different BuoyancyWeight Ratios(BWRs),submergence depths,and tunnel lengths(and mooring intervals)are chosen to establish a design strategy for reducing the maximum mooring tension.Both static and dynamic tensions are critical to find an acceptable design depending on the given target environmental condition.BWR plays a crucial role in preventing snap loading,and the corresponding static tension is a primary factor if the environmental condition is mild.The tunnel length can significantly be extended by reducing BWR when environmental force is not that substantial.Dynamic tension becomes important in harsh environmental conditions,for which high BWR and short mooring interval are required.It is underscored that the wet natural frequencies with mooring are located away from the spectral peaks of design waves or earthquakes. 展开更多
关键词 Submerged floating tunnel BWR submergence depth tunnel length mooring interval wave EARTHQUAKE mooring tension snap loading
下载PDF
Microstructures and Plane Energy Spectra of X80 Pipeline Steel Welded Joints by Submerged Arc Automatic Welding 被引量:4
4
作者 孔德军 YE Cundong +2 位作者 GUO Wei WU Yongzhong LONG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1265-1269,共5页
X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base... X80 pipeline steel was welded with submerged arc automatic welding, the microstructures, cavity sizes, fusion depths and plane scanning of chemical elements in the welded zone, fusion zone, heat affected zone and base steel were observed with OM(optical microscope) and SEM(scanning electron microscope), respectively. The experimental results show that there is main acicular ferrite in the base steel and welded zone, the microscopic structure of fusion zone is a blocked bainite, and the heat affected zone is composed of multilateral ferrite and pearlite. M-A unit of the welded zone is the main factor to strengthen the welded zone, composed of acicular ferrites. The percentage of cavities in the welded joint is less than that in the base steel, which is beneficial to increasing its mechanical performance and corrosion resistance. The fusion depth in the fusion zone and welded zone is 101.13 μm and 115.85 μm, respectively, and the distribution of chemical elements in the welded zone is uniform, no enrichment phenomena. 展开更多
关键词 X80 pipeline steel submerged arc automatic welding microstructure fusion depth plane scanning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部