The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were ...In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.展开更多
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined ...The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,展开更多
An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata ...An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara were constructed in mesocosm aquaria. Mesocosms were dosed weekly with different P loads (0 μg/L/Week and 100 μg/L/Week) for 17 weeks. Total P (TP), total soluble P (TSP), and soluble reactive P (SRP) concentrations in the waters of mesocosms added with P were significantly higher as opposed to the unenriched control mesocosms. The biomass of the attached periphyton and the cover of floating periphyton remained abundant in P-unenriched control mesocosms throughout the test period with a TP, TSP, and SRP concentration ranging of 0.021 - 0.049 mg/L, 0.004 - 0.024 mg/L, and 0.003 - 0.018 mg/L, respectively. P addition caused the decline of attached periphyton biomass to a low level and loss of floating periphyton. Results indicate that P enrichment in an aquatic ecosystem dominated by submersed plants could reduce attached periphyton biomass and eliminate floating periphyton. The research would be useful to maintain periphyton by reducing excessive P in aquatic ecosystem dominated by submersed plants.展开更多
Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shal...Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.展开更多
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.
基金Supported by the National Natural Science Foundation of China (39925007)the High Technology Research and Development Program of China (2002AA60l021)the Knowledge Innovation Program Key Project of Chinese Academy of Sciences (KSCX2-SW-102)
文摘In this paper, sinking and growth of apexes and mid-stems of Myriophyllum spicatum L., Hydrilla verticillata (L.f.) Royle and Ceratophyllum demersum L. in concrete ponds containing eutrophic water and sediment were investigated. Sinking rates of apexes and mid-stems reached 34.8% and 4.4% at the 6 th day and 91.1% and 66.7% at the 22 nd day for M. spicatum, 57.8% and 55.6% at the 6 th day and 100% and 97.8% at the 22 nd day for H. vertieillata, 18.9% and 86.7% at the 6 th day and 95.6% and 100% at the 22 nd day for C. demersum, respectively. Most sunken fragments established themselves successfully with significant growth. Total shoot length ofplantlets developed from apexes and mid-stems increased by 399% and 61% for M. spicatum, 593% and 256% for H. vertieillata and 114% and 104% for C. demersum, respectively. The results showed that it was feasible to establish submersed macrophytes via sinking and colonization of shoot fragments clipped off manually.
基金The project partially supported by the Project of Key Science and Technology of Education Ministry (00250), the Natural ScienceFoundation of Gansu Province (3ZS041-A25-028), and the Project of KJCXGC-01, NWNU, China
文摘The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,
文摘An experiment was conducted to investigate the response of periphyton biomass to addition of phosphorus (P) in an aquatic ecosystem dominated by submersed plants. Aquatic ecosystems dominated by Hydrilla verticillata (L.f.) Royle and Vallisneria natans (Lour.) Hara were constructed in mesocosm aquaria. Mesocosms were dosed weekly with different P loads (0 μg/L/Week and 100 μg/L/Week) for 17 weeks. Total P (TP), total soluble P (TSP), and soluble reactive P (SRP) concentrations in the waters of mesocosms added with P were significantly higher as opposed to the unenriched control mesocosms. The biomass of the attached periphyton and the cover of floating periphyton remained abundant in P-unenriched control mesocosms throughout the test period with a TP, TSP, and SRP concentration ranging of 0.021 - 0.049 mg/L, 0.004 - 0.024 mg/L, and 0.003 - 0.018 mg/L, respectively. P addition caused the decline of attached periphyton biomass to a low level and loss of floating periphyton. Results indicate that P enrichment in an aquatic ecosystem dominated by submersed plants could reduce attached periphyton biomass and eliminate floating periphyton. The research would be useful to maintain periphyton by reducing excessive P in aquatic ecosystem dominated by submersed plants.
基金sponsored by China Postdoctoral Science Foundation (Grant No.20090461149)the Postdoctoral Science Foundation of Jiangsu Province (Grant No. 0802029C)the Youth Science Foundation of JINAN Univeristy (Grant No. 51208026)
文摘Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.