为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨...为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨各种沉积形貌的种类、形成原因、结合机制及射流中粒子的径向和轴向分布。结果表明:在AC-HVAF粒子沉积过程中,嵌入型沉积为主要的沉积形貌,同时包含少量的破碎型与空腔型沉积粒子。在涂层的形成过程中,嵌入型沉积对涂层/基体结合性能起重要作用;空腔型沉积的小颗粒及破碎型沉积的大颗粒是造成沉积效率下降的主要原因。喷涂粒子主要集中在射流中心,越靠近射流边缘,空腔型沉积粒子越多,最终导致AC-HVAF粒子射流呈现出空间分布特征。展开更多
The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder ex...The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder exhibited similar velocity upon impact on the substrate surface. The powder with the lower particle density exhibited a higher temperature upon impingement process, resulting in the generation of a higher flattening ratio. Thus, the coating derived from the powder with the lower particle density possessed superior micro-hardness, porosity and surface roughness. However, the coating with the lowest particle density showed the poorest fracture toughness because of the generation of the largest amount of amorphous phase.展开更多
The process of spray forming utilized to fabricate WC particle-reinforced high speed steel composites has been studied. In addition, microstructures and mechanical properties of M2 high speed steel and its composites ...The process of spray forming utilized to fabricate WC particle-reinforced high speed steel composites has been studied. In addition, microstructures and mechanical properties of M2 high speed steel and its composites made by spray forming have been analyzed. The results show that the primary carbides of high speed steel are of two types: MC and MbC. With the increase in flight distance, the morphology of the primary carbides varies from fine fish-bone-like to islandlike and both bending strength and hardness increase. With the increase in volume fraction of WC reinforcement particles,hardness of the composites increases considerably, but bending strength, however, appears to be a decreasing tendency.展开更多
文摘为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨各种沉积形貌的种类、形成原因、结合机制及射流中粒子的径向和轴向分布。结果表明:在AC-HVAF粒子沉积过程中,嵌入型沉积为主要的沉积形貌,同时包含少量的破碎型与空腔型沉积粒子。在涂层的形成过程中,嵌入型沉积对涂层/基体结合性能起重要作用;空腔型沉积的小颗粒及破碎型沉积的大颗粒是造成沉积效率下降的主要原因。喷涂粒子主要集中在射流中心,越靠近射流边缘,空腔型沉积粒子越多,最终导致AC-HVAF粒子射流呈现出空间分布特征。
文摘The in-flight and deposition properties of three types of WC-17 Co powder with different particle densities during a high-velocity oxygen fuel (HVOF) thermal spray process were investigated. Three types of powder exhibited similar velocity upon impact on the substrate surface. The powder with the lower particle density exhibited a higher temperature upon impingement process, resulting in the generation of a higher flattening ratio. Thus, the coating derived from the powder with the lower particle density possessed superior micro-hardness, porosity and surface roughness. However, the coating with the lowest particle density showed the poorest fracture toughness because of the generation of the largest amount of amorphous phase.
文摘The process of spray forming utilized to fabricate WC particle-reinforced high speed steel composites has been studied. In addition, microstructures and mechanical properties of M2 high speed steel and its composites made by spray forming have been analyzed. The results show that the primary carbides of high speed steel are of two types: MC and MbC. With the increase in flight distance, the morphology of the primary carbides varies from fine fish-bone-like to islandlike and both bending strength and hardness increase. With the increase in volume fraction of WC reinforcement particles,hardness of the composites increases considerably, but bending strength, however, appears to be a decreasing tendency.