A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical mo...A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.展开更多
The subtle color distinction is the important function of electronic endoscope imaging diagnosis.However,after image acquisition,transmission and display,color distortions of intracorporeal organs or tissues occur ine...The subtle color distinction is the important function of electronic endoscope imaging diagnosis.However,after image acquisition,transmission and display,color distortions of intracorporeal organs or tissues occur inevitably,which are adverse to analyze image features accurately or to diagnose early pathological changes.A real-time color correction algorithm based on fourneighborhood and polynomial regression in YUV color space is proposed.Based on polynomial regression the color correction matrix is calculated in YUV color space according to the dierences between standard values of color checker and measured values of that imaged by the endoscope.As the correction is only executed on U and V components in YUV color space,the defect that the color of corrected images in RGB color space will change along with luminance can be avoided,and then the stability of image color is improved.Owing to four-neighborhood processing,the signal-to-noise ratio of corrected images is enhanced and the processing speed of correction algorithm is accelerated.The average color dierence is reduced from 0.3944 to 0.2850 by application of the proposed algorithm in high-denition electronic endoscope.A total of 17 frames per second can be achieved at the resolution of 1280800,and the color characteristics of the image after processing match that of human visual system.展开更多
针对现有水果识别方法需大量水果样本学习或仅对单一特征进行识别而导致的识别率较低的问题,提出一种基于水果图像处理的水果颜色和形状特征参数的提取方法、基于灰色关联分析和模糊隶属度匹配的球形水果自动识别方法。该方法通过提取...针对现有水果识别方法需大量水果样本学习或仅对单一特征进行识别而导致的识别率较低的问题,提出一种基于水果图像处理的水果颜色和形状特征参数的提取方法、基于灰色关联分析和模糊隶属度匹配的球形水果自动识别方法。该方法通过提取水果图像关注区域(region of interest,ROI)的颜色和形状特征,建立参比水果的颜色特征参比数据库和形状特征隶属度函数,计算待识别水果与参比水果颜色特征的灰色加权关联度,求取待识别水果对于参比水果形状特征参数的模糊隶属度,按各特征量等权的原则合成待识别水果对参比水果的总匹配度,并根据总匹配度的大小实现待识别水果种类的判别。大量实验结果表明:该方法简单、有效,不需要大样本量水果的学习和训练,平均识别正确率达到99%以上。展开更多
文摘A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.
基金supported by grants from National Key Technology R&D Program(Grant No.:2011BAI12B06)the Fundamental Research Funds for the Central Universities(Grant No.:2012FZA5023).
文摘The subtle color distinction is the important function of electronic endoscope imaging diagnosis.However,after image acquisition,transmission and display,color distortions of intracorporeal organs or tissues occur inevitably,which are adverse to analyze image features accurately or to diagnose early pathological changes.A real-time color correction algorithm based on fourneighborhood and polynomial regression in YUV color space is proposed.Based on polynomial regression the color correction matrix is calculated in YUV color space according to the dierences between standard values of color checker and measured values of that imaged by the endoscope.As the correction is only executed on U and V components in YUV color space,the defect that the color of corrected images in RGB color space will change along with luminance can be avoided,and then the stability of image color is improved.Owing to four-neighborhood processing,the signal-to-noise ratio of corrected images is enhanced and the processing speed of correction algorithm is accelerated.The average color dierence is reduced from 0.3944 to 0.2850 by application of the proposed algorithm in high-denition electronic endoscope.A total of 17 frames per second can be achieved at the resolution of 1280800,and the color characteristics of the image after processing match that of human visual system.
文摘针对现有水果识别方法需大量水果样本学习或仅对单一特征进行识别而导致的识别率较低的问题,提出一种基于水果图像处理的水果颜色和形状特征参数的提取方法、基于灰色关联分析和模糊隶属度匹配的球形水果自动识别方法。该方法通过提取水果图像关注区域(region of interest,ROI)的颜色和形状特征,建立参比水果的颜色特征参比数据库和形状特征隶属度函数,计算待识别水果与参比水果颜色特征的灰色加权关联度,求取待识别水果对于参比水果形状特征参数的模糊隶属度,按各特征量等权的原则合成待识别水果对参比水果的总匹配度,并根据总匹配度的大小实现待识别水果种类的判别。大量实验结果表明:该方法简单、有效,不需要大样本量水果的学习和训练,平均识别正确率达到99%以上。