There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteri...There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.展开更多
The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main result...The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.展开更多
The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface tempera...The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.展开更多
The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolvin...The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.展开更多
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it rea...The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.展开更多
The effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency are investigated us ing grid-scale data from nine equilibrium sensitivity cloud-resolving model experiments driven ...The effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency are investigated us ing grid-scale data from nine equilibrium sensitivity cloud-resolving model experiments driven without large-scale vertical velocity. The precipitation efficiencies are respectively defined in surface rainfall, cloud, and rain microphysical budgets. We mathematically and physically demonstrate the relationship between these precipitation efficiencies. The 2 ℃ increases in spatiotemporal invariant sea surface temperature (SST) from 27 ℃ to 29 ℃ and from 29 ℃ to 31 ℃, and the inclusion of diurnal SST difference 1 ℃ and the 1℃ increase in diurnal SST difference generate opposite changes in the precipitation efficiency by changing ice cloud-radiation interactions. The radiative and microphysical processes of ice clouds have opposite effects on the precipitation efficiency because of the rainfall increase associated with the reduction in the saturation mixing ratio caused by the exclusion of radiative effects and the decrease in rainfall related to the reduction in net condensation caused by the exclusion of deposition processes. The radiative effects of water clouds on the precipitation efficiency are statistically insensitive to the radiative effects of ice clouds.展开更多
The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are impose...The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are imposed with zero large-scale vertical velocity.The grid rainfall simulation data are categorized into eight rainfall types based on rainfall processes including water vapor convergence/divergence,local atmospheric drying/moistening,and hydrometeor loss/convergence or gain/divergence.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the increase in SST from 27°C to 29°C during the nighttime,whereas they are decreased during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased as the SST increases from 29°C to 31°C but the decreases are larger during the nighttime than during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased by the inclusion of diurnal variation of SST with diurnal difference of 1°C during the nighttime,but the decreases are significantly slowed down as the diurnal difference of SST increases from 1°C to 2°C.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the inclusion of diurnal variation of SST during the daytime.展开更多
Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geogra...Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geographical regions of the month of highest sea surface temperature. There are two broad bands in the central and eastern basin, trending northeast/southwest, such that the September band lies east of the August band along a given latitude line. Map three depicts regions of the lowest monthly mean temperatures. March is the most common month, but in the middle of the ocean is a band of Februarys trending northeast/southwest. These features on maps two and three are interpreted in terms of the newly proposed wide warm surface current and its seasonal variations, mainly in horizontal position, flowing northeastward off California. It has not been found possible to compare maps two and three with the results from any earlier work. Map one shows the mean seasonal range of surface temperature, which has a character similar to maps going all the way back to the late 1800s, but is based on considerably more data.展开更多
This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zona...This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP(WNPHA)in abnormal years possess smaller ranges after 1990.The different influences of the tropical SSTAs are important for this interdecadal change,which exhibit slow El Nino decaying pattern before 1990 while rapid transformation from El Nino to La Nina after 1990.The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences.Before 1990,the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation,respectively.Meanwhile,the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response,which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific.After 1990,the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation,respectively.Overall,the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990.Consequently,the WNPHA features narrower zonal range and less eastward extension after 1990,corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH.On the other hand,the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990,contributing to the change of the El Nino SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.展开更多
The spatial variation of sea surface temperature anomalies(SSTA) in the North Pacific Ocean during winter is investigated using the EOF decomposition method.The first two main modes of SSTA are associated with Pacific...The spatial variation of sea surface temperature anomalies(SSTA) in the North Pacific Ocean during winter is investigated using the EOF decomposition method.The first two main modes of SSTA are associated with Pacific Decadal Oscillation(PDO) mode and North Pacific Gyre Oscillation(NPGO) mode,respectively.Moreover,the first mode(PDO) is switched to the second mode(NPGO),a dominant mode after mid-1980.The mechanism of the modes' transition is analyzed.As the two oceanic modes are forced by the Aleutian Low(AL) and North Pacific Oscillation(NPO) modes,the AR-1 model is further used to examine the possible effect and mechanism of AL and NPO in generating the PDO and NPGO.The results show that compared to the NPO,the AL plays a more important role in generating the NPGO mode since the 1970s.Likewise,both the AL and NPO affect the PDO mode since the 1980s.展开更多
The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface...The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.展开更多
By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Resear...By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.展开更多
Sea ice conditions in the Bohai Sea of China are sensitive to large-scale climatic variations. On the basis of CLARA-A1-SAL data, the albedo variations are examined in space and time in the winter(December, January a...Sea ice conditions in the Bohai Sea of China are sensitive to large-scale climatic variations. On the basis of CLARA-A1-SAL data, the albedo variations are examined in space and time in the winter(December, January and February) from 1992 to 2008 in the Bohai Sea sea ice region. Time series data of the sea ice concentration(SIC), the sea ice extent(SIE) and the sea surface temperature(SST) are used to analyze their relationship with the albedo. The sea ice albedo changed in volatility appears along with time, the trend is not obvious and increases very slightly during the study period at a rate of 0.388% per decade over the Bohai Sea sea ice region.The interannual variation is between 9.93% and 14.50%, and the average albedo is 11.79%. The sea ice albedo in years with heavy sea ice coverage, 1999, 2000 and 2005, is significantly higher than that in other years; in years with light sea ice coverage, 1994, 1998, 2001 and 2006, has low values. For the monthly albedo, the increasing trend(at a rate of 0.988% per decade) in December is distinctly higher than that in January and February. The mean albedo in January(12.90%) is also distinctly higher than that in the other two months. The albedo is significantly positively correlated with the SIC and is significantly negatively correlated with the SST(significance level 90%).展开更多
Better correlation exists between the activity of tropical cyclones affecting East China and Shanghai and the concurrent signals of SSTA in tropical Pacific. In an attempt to justify this statistic finding, a four-dim...Better correlation exists between the activity of tropical cyclones affecting East China and Shanghai and the concurrent signals of SSTA in tropical Pacific. In an attempt to justify this statistic finding, a four-dimensional variational data assimilation system is established to optimize the initial fields of a hybrid air-sea coupled model. The prediction skill of tropical SSTA is improved. Long-term statistical models for predicting annual TC frequency affecting East China area and Shanghai city are developed based on 37-year products of this model and the forecast trials have achieved satisfactory results in 1998 and 1999.展开更多
This study investigates the relationship between subseasonal variations of the circulation and sea surface temperature(SST) over the South China–East Asian coastal region(EACR) in association with the persistent ...This study investigates the relationship between subseasonal variations of the circulation and sea surface temperature(SST) over the South China–East Asian coastal region(EACR) in association with the persistent heavy rainfall(PHR) events over South China during May–August through statistical analysis. Based on the intensity threshold and duration criterion of the daily rainfall, a total of 63 May–June(MJ) and 59July–August(JA) PHR events are selected over South China from 1979 to 2011. The lower-level circulation anomalies on subseasonal timescale exhibit an anomalous cyclone over South China and an anomalous anticyclone shaped like a tongue over the South China Sea(SCS) during the PHR events for MJ group.The anomalous cyclone over South China in MJ originates from low-value systems in the mid-high latitudes before the rainfall. The anomalous anticyclone over the SCS is due to the westward extension of the western Pacific subtropical high(WPSH) and the southeastward propagation of the anomalous anticyclone from South China before the rainfall. For JA group, the lower-level anomalous circulation pattern is similar to that for MJ over the South China–EACR, but with di?erent features of propagation. The subseasonal anomalous anticyclone is also related to the westward stretch of the WPSH, while the anomalous cyclone is traced back to the weak anomalous cyclone over the Philippine Sea several days before the rainfall events.Positive SST anomaly(SSTA) is observed over the SCS and the Philippine Sea during the MJ PHR events on the subseasonal timescale. It is closely linked with the variation of local anomalous anticyclone. In contrast, negative SSTA occupies the South China coastal region for the JA PHR events, and it is driven by the anomalous cyclone which propagates northwestward from the Philippine Sea. The subseasonal positive(negative) SSTAs are generated via the local processes of above(below)-normal incident solar radiation and below(above)-normal latent heat fluxes. The possible role of the subseasonal SSTA in the local convective instability is also analyzed in this study.展开更多
The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurf...The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurface temperature variations in the equator Pacific features a 20-40 year period and is North-South asymmetric about the equator.Decadal variations of the thermocline are most pronounced in the southwest of the Tropical Pacific.Decadal variation of the north-south asymmetric Sea Surface wind in the tropical Pacific,especially in the South Pacific Convergence,is the dominant mechanism of the nature decadal variation of the subsurface temperature in the equatorial Pacific.展开更多
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(41975080)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘There is a continuous and relatively stable rainy period every spring in southern China(SC).This spring precipitation process is a unique weather and climate phenomenon in East Asia.Previously,the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean.Based on the observed and reanalysis datasets from 1982 to 2021,this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC,and focuses on the potential influence of the tropical sea surface temperature(SST)anomalies.The results show that the interannual variations of monthly precipitation in spring in SC have significant differences,and the correlations between each two months are very weak.All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone(WNPAC),and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC.However,the WNPAC is influenced by tropical SST anomalies in different regions each month.The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Nino-Southern Oscillation,and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia(PEA)teleconnection.In contrast,the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response.The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent,which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.
基金The National Natural Science Foundation of China under contract No. 40805035China COPES Program under contract Nos GYHY-200706005 and NSF 90711003
文摘The variability of the sea surface temperature(SST) in the China seas has been studied in seasonal,interannual and interdecadal scales based on the monthly data of HadISST spanning from 1870 to 2007. The main results obtained are SST in the China offshore changes most actively at the seasonal scale with the intensity diminishing from north to south,as the temperature differences between summer and winter reaching 17 and 4 C in the northern and southern areas,respectively. Moreover,seasonal variation near the coastal regions seems relatively stronger than that far from the coastline;significant interannual variations are detected,with the largest positive anomaly occurring in 1998 in the overall area. But as far as different domains are concerned,there exists great diversity,and the difference is also found between winter and summer. Differed from the seasonal variations,where the strongest interannual variability takes place,resides to the south of that of the seasonal ones in the northern section,nevertheless in the South China Sea,the most significant interannual variability is found in the deep basin;interdecadal changes of summer,winter and annual mean SST in different domains likewise present various features. In addition,a common dominant warming in recent 20 a are found in the overall China offshore with the strongest center located in the vicinity of the Changjiang Estuary in the East China Sea,which intensifies as high as 1.3 C during the past 130 a.
基金Sponsored jointly by the " National Key Developing Program for Basic Sciences" !(G 1998040900) Part I and the Key Program of N
文摘The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB417201)the National Natural Science Foundation of China (Grant Nos. 41075034,40930950,40975034,and 41075044)
文摘The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h 1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29℃ to 31℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm.h 1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h 1,the decrease of SST from 29℃ to 27℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.
基金the CAS Key Project (KZCXZ-203)the NSFC Project (No. 49735160 and No.40075020)IAP Innovation Fund (No. 8-1307).
文摘The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.
基金supported by the National Basic Research Program of China (Grant Nos. 2013CB430103 and 2011CB403405)the National Natural Science Foundation of China (Grant Nos. 41075039 and 41175065)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (Grant No. PAPD2011)
文摘The effects of clouds, sea surface temperature, and its diurnal variation on precipitation efficiency are investigated us ing grid-scale data from nine equilibrium sensitivity cloud-resolving model experiments driven without large-scale vertical velocity. The precipitation efficiencies are respectively defined in surface rainfall, cloud, and rain microphysical budgets. We mathematically and physically demonstrate the relationship between these precipitation efficiencies. The 2 ℃ increases in spatiotemporal invariant sea surface temperature (SST) from 27 ℃ to 29 ℃ and from 29 ℃ to 31 ℃, and the inclusion of diurnal SST difference 1 ℃ and the 1℃ increase in diurnal SST difference generate opposite changes in the precipitation efficiency by changing ice cloud-radiation interactions. The radiative and microphysical processes of ice clouds have opposite effects on the precipitation efficiency because of the rainfall increase associated with the reduction in the saturation mixing ratio caused by the exclusion of radiative effects and the decrease in rainfall related to the reduction in net condensation caused by the exclusion of deposition processes. The radiative effects of water clouds on the precipitation efficiency are statistically insensitive to the radiative effects of ice clouds.
基金National Basic Research Program of China (973 Program) (2009CB421505)National Natural Sciences Foundation of China (40921160379,40775036)
文摘The effects of sea surface temperature(SST) and its diurnal variation on diurnal variation of rainfall are examined in this study by analyzing a series of equilibrium cloud-resolving model experiments which are imposed with zero large-scale vertical velocity.The grid rainfall simulation data are categorized into eight rainfall types based on rainfall processes including water vapor convergence/divergence,local atmospheric drying/moistening,and hydrometeor loss/convergence or gain/divergence.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the increase in SST from 27°C to 29°C during the nighttime,whereas they are decreased during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased as the SST increases from 29°C to 31°C but the decreases are larger during the nighttime than during the daytime.The rainfall contributions of the rainfall types with water vapor convergence are decreased by the inclusion of diurnal variation of SST with diurnal difference of 1°C during the nighttime,but the decreases are significantly slowed down as the diurnal difference of SST increases from 1°C to 2°C.The rainfall contributions of the rainfall types with water vapor convergence are insensitive to the inclusion of diurnal variation of SST during the daytime.
文摘Mean seasonal surface temperatures of the North Pacific are illustrated in three maps. Twenty nine years of ship-injection temperatures are used for the whole North Pacific (north of 20?N). Map number two shows geographical regions of the month of highest sea surface temperature. There are two broad bands in the central and eastern basin, trending northeast/southwest, such that the September band lies east of the August band along a given latitude line. Map three depicts regions of the lowest monthly mean temperatures. March is the most common month, but in the middle of the ocean is a band of Februarys trending northeast/southwest. These features on maps two and three are interpreted in terms of the newly proposed wide warm surface current and its seasonal variations, mainly in horizontal position, flowing northeastward off California. It has not been found possible to compare maps two and three with the results from any earlier work. Map one shows the mean seasonal range of surface temperature, which has a character similar to maps going all the way back to the late 1800s, but is based on considerably more data.
基金National Key R&D Program of China(2016YFA0600601)Guangdong Basic and Applied Basic Research Foundation(2020A1515011572)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP(WNPHA)in abnormal years possess smaller ranges after 1990.The different influences of the tropical SSTAs are important for this interdecadal change,which exhibit slow El Nino decaying pattern before 1990 while rapid transformation from El Nino to La Nina after 1990.The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences.Before 1990,the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation,respectively.Meanwhile,the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response,which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific.After 1990,the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation,respectively.Overall,the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990.Consequently,the WNPHA features narrower zonal range and less eastward extension after 1990,corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH.On the other hand,the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990,contributing to the change of the El Nino SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.
基金Basic Research Program of National Natural Science Foundation of China (2007CB411800)
文摘The spatial variation of sea surface temperature anomalies(SSTA) in the North Pacific Ocean during winter is investigated using the EOF decomposition method.The first two main modes of SSTA are associated with Pacific Decadal Oscillation(PDO) mode and North Pacific Gyre Oscillation(NPGO) mode,respectively.Moreover,the first mode(PDO) is switched to the second mode(NPGO),a dominant mode after mid-1980.The mechanism of the modes' transition is analyzed.As the two oceanic modes are forced by the Aleutian Low(AL) and North Pacific Oscillation(NPO) modes,the AR-1 model is further used to examine the possible effect and mechanism of AL and NPO in generating the PDO and NPGO.The results show that compared to the NPO,the AL plays a more important role in generating the NPGO mode since the 1970s.Likewise,both the AL and NPO affect the PDO mode since the 1980s.
基金State Key Development Program for Basic Research of China (2009CB421505)Projects of the Natural Science Foundation of China (4107504441075079)
文摘The sensitivity of precipitation to sea surface temperature(SST) and its diurnal variation is investigated through a rainfall partitioning analysis of two-dimensional cloud-resolving model experiments based on surface rainfall budget.For all experiments,the model is set up using zero vertical velocity and a constant zonal wind and is integrated over 40 days to reach quasi-equilibrium states.The 10-day equilibrium grid-scale simulation data and a time-invariant SST of 29°C are used in the control experiment.In the sensitivity experiments,time-invariant SSTs are 27°C and 31°C with an average value of 29°C when the minimum and maximum values of diurnal SST differences are 1°C and 2°C,respectively.The results show that the largest contribution to total rainfall is from the rainfall with water vapor convergence and local atmospheric drying and hydrometeor gain/divergence(~30%) in all experiments.When SST increases from 27°C to 29°C,the contribution from water vapor convergence decreases.The increase of SST reduces the contribution of the rainfall with water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric drying and hydrometeor gain/divergence and the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The inclusion of diurnal variation of SST with the diurnal difference of 1°C decreases the rainfall contribution from water vapor convergence primarily through the decreased contribution of the rainfall with local atmospheric moistening and hydrometeor loss/convergence.The contribution of the rainfall from water vapor convergence is barely changed as the diurnal difference of SST increases from 1°C to 2°C.
基金National Key Basic Research and Development Planning Program of China(Program 973)(2013CB430202)China Special Fund for Meteorological Research in the Public Interest(Major Projects)(GYHY201506001-1)National Natural Science Foundation of China(91337109,41305080)
文摘By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.
文摘Sea ice conditions in the Bohai Sea of China are sensitive to large-scale climatic variations. On the basis of CLARA-A1-SAL data, the albedo variations are examined in space and time in the winter(December, January and February) from 1992 to 2008 in the Bohai Sea sea ice region. Time series data of the sea ice concentration(SIC), the sea ice extent(SIE) and the sea surface temperature(SST) are used to analyze their relationship with the albedo. The sea ice albedo changed in volatility appears along with time, the trend is not obvious and increases very slightly during the study period at a rate of 0.388% per decade over the Bohai Sea sea ice region.The interannual variation is between 9.93% and 14.50%, and the average albedo is 11.79%. The sea ice albedo in years with heavy sea ice coverage, 1999, 2000 and 2005, is significantly higher than that in other years; in years with light sea ice coverage, 1994, 1998, 2001 and 2006, has low values. For the monthly albedo, the increasing trend(at a rate of 0.988% per decade) in December is distinctly higher than that in January and February. The mean albedo in January(12.90%) is also distinctly higher than that in the other two months. The albedo is significantly positively correlated with the SIC and is significantly negatively correlated with the SST(significance level 90%).
基金Natural Science Foundation of China (49705063) projects funded by the national "9th five-year development plan" key scientific
文摘Better correlation exists between the activity of tropical cyclones affecting East China and Shanghai and the concurrent signals of SSTA in tropical Pacific. In an attempt to justify this statistic finding, a four-dimensional variational data assimilation system is established to optimize the initial fields of a hybrid air-sea coupled model. The prediction skill of tropical SSTA is improved. Long-term statistical models for predicting annual TC frequency affecting East China area and Shanghai city are developed based on 37-year products of this model and the forecast trials have achieved satisfactory results in 1998 and 1999.
基金Supported by the National (Key) Basic Research and Development (973) Program of China (2012CB417203)China Meteorological Administration Special Public Welfare Research Fund (GYHY201106017)
文摘This study investigates the relationship between subseasonal variations of the circulation and sea surface temperature(SST) over the South China–East Asian coastal region(EACR) in association with the persistent heavy rainfall(PHR) events over South China during May–August through statistical analysis. Based on the intensity threshold and duration criterion of the daily rainfall, a total of 63 May–June(MJ) and 59July–August(JA) PHR events are selected over South China from 1979 to 2011. The lower-level circulation anomalies on subseasonal timescale exhibit an anomalous cyclone over South China and an anomalous anticyclone shaped like a tongue over the South China Sea(SCS) during the PHR events for MJ group.The anomalous cyclone over South China in MJ originates from low-value systems in the mid-high latitudes before the rainfall. The anomalous anticyclone over the SCS is due to the westward extension of the western Pacific subtropical high(WPSH) and the southeastward propagation of the anomalous anticyclone from South China before the rainfall. For JA group, the lower-level anomalous circulation pattern is similar to that for MJ over the South China–EACR, but with di?erent features of propagation. The subseasonal anomalous anticyclone is also related to the westward stretch of the WPSH, while the anomalous cyclone is traced back to the weak anomalous cyclone over the Philippine Sea several days before the rainfall events.Positive SST anomaly(SSTA) is observed over the SCS and the Philippine Sea during the MJ PHR events on the subseasonal timescale. It is closely linked with the variation of local anomalous anticyclone. In contrast, negative SSTA occupies the South China coastal region for the JA PHR events, and it is driven by the anomalous cyclone which propagates northwestward from the Philippine Sea. The subseasonal positive(negative) SSTAs are generated via the local processes of above(below)-normal incident solar radiation and below(above)-normal latent heat fluxes. The possible role of the subseasonal SSTA in the local convective instability is also analyzed in this study.
基金supported by the Ministry of Science and the Technology of China (National Basic Research Program of China 2012CB955602)Natural Science Foundation of China (40830106,40921004 and 41176006)
文摘The nature decadal variability of the equatorial Pacific subsurface temperature is examined in the control simulation with the Geophysical Fluid Dynamics Laboratory coupled model CM2.1.The dominant mode of the subsurface temperature variations in the equator Pacific features a 20-40 year period and is North-South asymmetric about the equator.Decadal variations of the thermocline are most pronounced in the southwest of the Tropical Pacific.Decadal variation of the north-south asymmetric Sea Surface wind in the tropical Pacific,especially in the South Pacific Convergence,is the dominant mechanism of the nature decadal variation of the subsurface temperature in the equatorial Pacific.