In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for ...In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed. The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth, the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China.展开更多
The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage...The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage(RT), no-till(NT), 2 crops/year(2C), subsoiling(SS), and conventional tillage(CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, and wheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on water conservation. The soil water storage increased 12 - 33 mm with NT and 9-24 mm with SS at the end of summer fallow periods. The soil evaporation with NT and SS decreased 7-8 mm and 34 - 36 mm during the fallow periods of 1999 and 2001, respectively. Evapotranspiration(ET)with NT and SS increased about 47 mm during wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water losses during the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2nd year, increased by 3, 5 and 8% with RT, NT and SS, respectively, compared with CT. The highest wheat yields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillage practices provided great benefits to saving energy and labors, reducing operation inputs, and increasing economic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, enhancing water availability, and saving energy, as well as increasing wheat yield.展开更多
【目的】研究不同耕作方式下常规尿素与控释尿素对不同玉米品种籽粒灌浆速率、产量和水分利用效率的影响。【方法】试验采用裂区设计,以不施氮为对照,设置耕作方式为主区(旋茬处理和旋茬后再深松处理);品种为副主区(郑单958和登海3号);...【目的】研究不同耕作方式下常规尿素与控释尿素对不同玉米品种籽粒灌浆速率、产量和水分利用效率的影响。【方法】试验采用裂区设计,以不施氮为对照,设置耕作方式为主区(旋茬处理和旋茬后再深松处理);品种为副主区(郑单958和登海3号);尿素类型为副区(常规尿素和控释尿素,用量均为225 kg N.hm-2)。【结果】相同耕作方式、施氮水平和品种条件下,与常规尿素相比,控释尿素处理0—100 cm土层含水量在玉米小喇叭口期较高,而收获期较低,实现了土壤水分的时空高效利用;控释尿素处理的玉米籽粒灌浆速率、水分利用效率均显著提高。深松可显著提高玉米水分利用效率和产量。与郑单958相比,登海3号有较高的籽粒灌浆速率、产量和水分利用效率。控释尿素、深松和品种间有明显的正耦合效应,利于旱作高产。【结论】土壤水分的时空高效利用和较高的灌浆速率是玉米产量和水分利用效率提高的重要原因。因此,在半湿润玉米种植区,选用适宜品种、施用控释尿素并结合深松,可以更好地调控土壤的水分供应状况,实现土壤水分供应与作物需水的时空吻合。展开更多
基金the National Key Technologies R&D Program of China during the 1 lth Five-Year Plan Period(2006BAD02A15,2007BAD89B01)the National Natural Science Foundation of China(30471010).
文摘In order to improve the water use efficiency under conservation tillage, the effects of subsoiling on soil moisture under notillage were studied. An experiment of 40 cm subsoiling in a field kept under no-tillage for 2 years was operated from 2005 to 2006. Based on the data of the soil moisture and crop yield, the physical basis of subsoiling for water conservation and yield increase was analyzed. The results showed that the soil water storage under subsoiling, from the soil surface to a depth of 100 cm was more than that under no-tillage for the growth season. In the 0-100 cm soil depth, the soil moisture in 50-100 cm depth under subsoiling was more compared with no-tillage, which increased when it's drought and decreased when it's rainy with the increase in soil depth. Compared with no-tillage, subsoiling could reduce the water consumption of oats in the 0-50 cm depth and increase the water consumption in the 50-100 cm depth. Also, subsoiling increased the yield by 18.29% and the water use efficiency by 16.8% in a two-year average. The effects of subsoiling on water conservation and yield increase were affected by precipitation, and a well-proportioned rainfall was better to increase yield and water use efficiency. Meanwhile, subsoiling decreased bulk density, which increased with the available precipitation. Subsoiling under no-tillage is the effective rotation tillage to contain more soil moisture and improve water use efficiency in ecotone of North China.
文摘The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage(RT), no-till(NT), 2 crops/year(2C), subsoiling(SS), and conventional tillage(CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, and wheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on water conservation. The soil water storage increased 12 - 33 mm with NT and 9-24 mm with SS at the end of summer fallow periods. The soil evaporation with NT and SS decreased 7-8 mm and 34 - 36 mm during the fallow periods of 1999 and 2001, respectively. Evapotranspiration(ET)with NT and SS increased about 47 mm during wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water losses during the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2nd year, increased by 3, 5 and 8% with RT, NT and SS, respectively, compared with CT. The highest wheat yields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillage practices provided great benefits to saving energy and labors, reducing operation inputs, and increasing economic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, enhancing water availability, and saving energy, as well as increasing wheat yield.
文摘【目的】研究不同耕作方式下常规尿素与控释尿素对不同玉米品种籽粒灌浆速率、产量和水分利用效率的影响。【方法】试验采用裂区设计,以不施氮为对照,设置耕作方式为主区(旋茬处理和旋茬后再深松处理);品种为副主区(郑单958和登海3号);尿素类型为副区(常规尿素和控释尿素,用量均为225 kg N.hm-2)。【结果】相同耕作方式、施氮水平和品种条件下,与常规尿素相比,控释尿素处理0—100 cm土层含水量在玉米小喇叭口期较高,而收获期较低,实现了土壤水分的时空高效利用;控释尿素处理的玉米籽粒灌浆速率、水分利用效率均显著提高。深松可显著提高玉米水分利用效率和产量。与郑单958相比,登海3号有较高的籽粒灌浆速率、产量和水分利用效率。控释尿素、深松和品种间有明显的正耦合效应,利于旱作高产。【结论】土壤水分的时空高效利用和较高的灌浆速率是玉米产量和水分利用效率提高的重要原因。因此,在半湿润玉米种植区,选用适宜品种、施用控释尿素并结合深松,可以更好地调控土壤的水分供应状况,实现土壤水分供应与作物需水的时空吻合。