By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u ...By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u 〉 0, x ∈ Ω, u|δΩ =+∞, where Ω is a bounded domain with smooth boundary in R^N; g ∈ C^1[0, ∞), g(0) = g'(0) = 0, and there exists p 〉 1, such that lim g(sξ)/g(s)=ξ^p, ↓Aξ 〉 0, and k ∈ Cloc^α(Ω) is non-negative non-trivial in D which may be singular on the boundary.展开更多
The Schwarz method for a class of elliptic variational inequalities with noncoercive operator was studied in this work. The author proved the error estimate in L∞-norm for two domains with overlapping nonmatching gri...The Schwarz method for a class of elliptic variational inequalities with noncoercive operator was studied in this work. The author proved the error estimate in L∞-norm for two domains with overlapping nonmatching grids using the geometrical convergence of solutions and the uniform convergence of subsolutions.展开更多
By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problem...By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problems.Then, the exsitence of an entire large solution is proved by the perturbed method.展开更多
The author studies semilinear parabolic equations with initial and periodic boundary value conditions. In the presence of non-well-ordered sub- and super-solutions: "subsolution ≮ supersolution', the existence and...The author studies semilinear parabolic equations with initial and periodic boundary value conditions. In the presence of non-well-ordered sub- and super-solutions: "subsolution ≮ supersolution', the existence and stability/instability of equilibrium solutions are obtained.展开更多
This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* su...This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.展开更多
Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on...Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on Ω.Under the existence of a C^(2)-smooth strictly J-plurisubharmonic(J-psh for short)subsolution,we can solve this Dirichlet problem.Our method is based on the properties of subsolutions which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds.展开更多
This paper first proves the following equations△u-m ̄2u+f(x,u)=0, x(R ̄n,n≥3 m>0 existence of decaying positive entire solution, then emphatically, proves this solution'suniqueness.
The existence and uniqueness of positive solutions for a class of quasilinear ordinary differential equations with a large parameter are obtained. It is shown that the flat core of positive solutions can exist. So som...The existence and uniqueness of positive solutions for a class of quasilinear ordinary differential equations with a large parameter are obtained. It is shown that the flat core of positive solutions can exist. So some results of [1-3] are sharpened.展开更多
This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient ...This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient conditions for the global existence of solution are obtained.展开更多
In this paper we consider the Monge–Ampère type equations on compact almost Hermitian manifolds.We derive C∞a priori estimates under the existence of an admissible C-subsolution.Finally,we obtain an existence r...In this paper we consider the Monge–Ampère type equations on compact almost Hermitian manifolds.We derive C∞a priori estimates under the existence of an admissible C-subsolution.Finally,we obtain an existence result if there exists an admissible supersolution.展开更多
The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x...The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x) is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.展开更多
基金supported by the National Natural Science Foundation of China (10671169)
文摘By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u 〉 0, x ∈ Ω, u|δΩ =+∞, where Ω is a bounded domain with smooth boundary in R^N; g ∈ C^1[0, ∞), g(0) = g'(0) = 0, and there exists p 〉 1, such that lim g(sξ)/g(s)=ξ^p, ↓Aξ 〉 0, and k ∈ Cloc^α(Ω) is non-negative non-trivial in D which may be singular on the boundary.
文摘The Schwarz method for a class of elliptic variational inequalities with noncoercive operator was studied in this work. The author proved the error estimate in L∞-norm for two domains with overlapping nonmatching grids using the geometrical convergence of solutions and the uniform convergence of subsolutions.
基金National Natural Science Foundation of China (No.10131050)
文摘By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problems.Then, the exsitence of an entire large solution is proved by the perturbed method.
基金Partially supported by the project-sponsored by SRF for ROCS, SEM
文摘The author studies semilinear parabolic equations with initial and periodic boundary value conditions. In the presence of non-well-ordered sub- and super-solutions: "subsolution ≮ supersolution', the existence and stability/instability of equilibrium solutions are obtained.
文摘This paper considers the quasilinear elliptic equation where , and 0 < m < p-1 < q < +∞, Ω is a bounded domain in RN(N 3).λ is a positive number. Object is to estimate exactly the magnitute of λ* such that (1)λ has at least one positive solution if λ ∈ (0, λ*) and no positive solutions if λ > λ*. Furthermore, (1)λ has at least one positive solution when λ = λ*, and at least two positive solutions when λ ∈ (0, λ*) and . Finally, the authors obtain a multiplicity result with positive energy of (1)λ when 0 < m < p - 1 < q = (Np)/(N-p) - 1.
基金supported by the National Key R and D Program of China(2020YFA0713100).
文摘Let Ω⊆M be a bounded domain with a smooth boundary ∂Ω,where(M,J,g)is a compact,almost Hermitian manifold.The main result of this paper is to consider the Dirichlet problem for a complex Monge-Ampère equation on Ω.Under the existence of a C^(2)-smooth strictly J-plurisubharmonic(J-psh for short)subsolution,we can solve this Dirichlet problem.Our method is based on the properties of subsolutions which have been widely used for fully nonlinear elliptic equations over Hermitian manifolds.
文摘This paper first proves the following equations△u-m ̄2u+f(x,u)=0, x(R ̄n,n≥3 m>0 existence of decaying positive entire solution, then emphatically, proves this solution'suniqueness.
文摘The existence and uniqueness of positive solutions for a class of quasilinear ordinary differential equations with a large parameter are obtained. It is shown that the flat core of positive solutions can exist. So some results of [1-3] are sharpened.
文摘This paper deals with the existence and nonexistence of global positive solution of the following equation:where p, q, m, α are parameters with is a bounded domain with Ω smooth enough, The necessary and sufficient conditions for the global existence of solution are obtained.
基金Supported by the project“Analysis and Geometry on Bundle”of Ministry of Science and Technology of the People’s Republic of China(Grant No.SQ2020YFA070080)by China Postdoctoral Science Foundation(Grant No.290612)。
文摘In this paper we consider the Monge–Ampère type equations on compact almost Hermitian manifolds.We derive C∞a priori estimates under the existence of an admissible C-subsolution.Finally,we obtain an existence result if there exists an admissible supersolution.
基金Project supported by Fundaco para a Ciência e a Tecnologia (FCT) (No. PEst OE/MAT/UI0209/2011)supported by an FCT grant (No. SFRH/BPD/69314/201)
文摘The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem tu- △u=au-b(x)up in Ω×R+,u(0)=u0,u(t )| Ω=0, as p→ +∞, where Ω is a bounded domain, and b(x) is a nonnegative function. The authors deduce that the limiting configuration solves a parabolic obstacle problem, and afterwards fully describe its long time behavior.