Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods...Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods, the polarimetric whitening filter (PWF) can be used to produce a minimum-speckle image by combining the complex elements of the scattering matrix, but polarimetric information is lost after the filtering process. A polarimetric filter based on subspaze decomposition which was proposed by Cu et al specializes in retrieving principle scattering characteristics, but the corresponding mean value of an image after filtering is not kept well. A new filter is proposed for improving the disadvantage based on subspace decomposition. Under the constraint that a weighted combination of the polarimetric SAR images equals to the output of the PWF, the Euclidean distance between an unfiltered parameter vector and a signal space vector is minimized so that noises can be reduced. It is also shown that the proposed method is equivalent to the subspace filter in the case of no constraint. Experimental results with the NASA/JPL airborne polarimetric SAR data demonstrate the effectiveness of the proposed method.展开更多
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati...Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.展开更多
Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and...Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.展开更多
We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an ...We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an improved adaptive time frequency distribution is developed, which is non negative, free of cross term interference, and of better time frequency resolution. The paper presents an effective numerical algorithm to estimate the optimal parameters of the basis. Simulations indicate that the proposed approach is effective in analyzing signal's time frequency behavior.展开更多
An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margi...An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.展开更多
A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transf...A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.展开更多
To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root...To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.展开更多
基金supported by the National Natural Science Foundation of China (40571099)the Research Fund for the Doctoral Program of Higher Education of China.
文摘Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods, the polarimetric whitening filter (PWF) can be used to produce a minimum-speckle image by combining the complex elements of the scattering matrix, but polarimetric information is lost after the filtering process. A polarimetric filter based on subspaze decomposition which was proposed by Cu et al specializes in retrieving principle scattering characteristics, but the corresponding mean value of an image after filtering is not kept well. A new filter is proposed for improving the disadvantage based on subspace decomposition. Under the constraint that a weighted combination of the polarimetric SAR images equals to the output of the PWF, the Euclidean distance between an unfiltered parameter vector and a signal space vector is minimized so that noises can be reduced. It is also shown that the proposed method is equivalent to the subspace filter in the case of no constraint. Experimental results with the NASA/JPL airborne polarimetric SAR data demonstrate the effectiveness of the proposed method.
基金the HKRGC GRF 12306616,12200317,12300218 and 12300519,and HKU Grant 104005583.
文摘Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.
基金The National Hi-Tech Development Plan (863-317-03-01-02-04-20).
文摘Based on the fact that the variation of tile direction of arrival (DOA) isslower than that of the channel fading, the steering vector of the desired signal is estimatedfirstly using a subspace decomposition method and then a constrained condition is configured.Traffic signals are further employed to estimate the channel vector based on the constrained leastsquares criterion. We use the iterative least squares with projection (ILSP) algorithm initializedby the pilot to get the estimation. The accuracy of channel estimation and symbol detection can beprogressively increased through the iteration procedure of the ILSP algorithm. Simulation resultsdemonstrate that the proposed algorithm improves the system performance effectively compared withthe conventional 2-D RAKE receiver.
文摘We propose a method that uses linear chirp modulated Gaussian functions as the elementary functions, by adaptively adjusting variances, time frequency centers and sweep rates, to decompose signals. By taking WVD, an improved adaptive time frequency distribution is developed, which is non negative, free of cross term interference, and of better time frequency resolution. The paper presents an effective numerical algorithm to estimate the optimal parameters of the basis. Simulations indicate that the proposed approach is effective in analyzing signal's time frequency behavior.
文摘An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073).
文摘A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.
基金Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method.