As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CC...Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CCS) offer a promising solution for delivering cost-effective electricity to these underserved areas. However, the integration of multiple CCS units along a transmission network introduces complex interactions that can significantly impact voltage, current, and power flow. This study presents a detailed mathematical model to analyze the effects of varying distances and configurations of multiple CCS units on a transmission network, with a focus on voltage stability, power quality, and reactive power fluctuations. Furthermore, the research addresses the phenomenon of ferroresonance, a critical issue in networks with multiple CCS units, by developing and validating suppression strategies to ensure stable operation. Through simulation and practical testing, the study provides insights into optimizing CCS deployment, ultimately contributing to more reliable and efficient rural electrification solutions.展开更多
This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly f...This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.展开更多
A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simul...A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simultaneously. To enhance the immunity, the values of capacitance and inductance should be increased, which are actually limited by coal mine explosion-proof standards. Hence, for the first time, an active filter was applied in an electromagnetic interference (EMI) output filter. As a result, the interference within 30 MHz clearly weakened, but the frequency spectrum had a wide range. An EMI input filter and ferrite beads were adopted to restrain higher frequency interference. An output interference spectrogram of the substation was obtained with an analyzer. The results indicate that the improved complex filtering markedly help to control interference. With the support of improved complex filtering and other enhancing immunity means about I/O ports, the substation managed to pass both the EFT/B immunity test and the explosion-proof test synchronously. We conclude that improved complex filtering is of vital importance in enhancing the electromagnetic compatibilitv (EMC) of the coal mine monitoring system.展开更多
The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advanta...The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.展开更多
In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary tra...In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.展开更多
International standards are being developed to promote rapid configuration and integration into the utility automation system. In order to take advantage of modern technology to provide new benefits to users of substa...International standards are being developed to promote rapid configuration and integration into the utility automation system. In order to take advantage of modern technology to provide new benefits to users of substation automation, the International Electrotechnical Commission (IEC) has developed and released a new global standard for substation automation, named IEC 61850. This aim of this paper is to provide a basic technical overview of substation automation and the standard IEC 61850. It will discuss the benefits of each major aspect of this standard and it will describe how these concepts can be used in the development and implementation of tools related to Substation Automation. The application of communication standards and protocols to facilitate data exchange within the substation environment is presented. In addition, the model is implemented using a small distribution system that plans to utilize new communication technology following the IEC 61850 standard. Finally it proposes a set of laboratories to be used as the core of an undergraduate course. Results illustrate that the communication approach as proposed by IEC 61850 fulfills the real-time requirements for control and protection of distribution system.展开更多
In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor a...In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system’s ef- ficiency was validated through experimentation.展开更多
Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These c...Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These cells had already been in use for years for example to test the electromagnetic compatibility of electronic devices.The smaller the size of the cell,the higher its bandwidth-but the cell should be large enough to not disturb the electric field with the installed sensor under test.To overcome this problem,a calibration procedure using a gigahertz transverse electromagnetic (GTEM) test cell and a pulsed signal source were introduced in 1997.Although this procedure has many advantages and is easy to understand,measurements show several shortcomings of this calibration method.To overcome the disadvantages of the known systems,a calibration cell using a monopole cone antenna and a metallic ground plane were developed and tested.The UHF sensor was placed in a region with minimum distortion of the electric field due to its installation.Experience shows that the new method for calibrating UHF sensors is necessary in order to overcome the limits in the calibration of large sensors and to suppress the propagation of higher order modes and reflections.Due to its surprisingly simple structure,its low price and low overall measurement uncertainty,it is the preferred method for calibrating UHF sensors for GIS applications.展开更多
The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) resear...The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) research foundation to optimize the network configuration. In accordance with IEC61850 standard, the network is partitioned into several VLANs based on the Tag VLAN division method of ID address. Real-time communication packets between GOOSE networks, SV (sampling information) networks, and switches use 802.1Q protocol headers to distinguish these packets. Finally, OPNET simulation software was used to simulate and verify the simplified dual-star topology. The results demonstrate that the delay and traffic bandwidth meet the requirements of actual substation operation standards. Compared with ordinary single-star networks, the reliability is greatly improved and the effectiveness is improved.展开更多
Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these syst...Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these systems together with protection measures and additional control actions (using protocol IEC61850) seem not to be enough to free substations of security attacks (e.g. virus, intruders, forgery or unauthorized data manipulation). This paper analyzes the main features of an electric power substation together with the aspects that might be significantly affected by cyber-attacks. The paper also presents the implementation of a specific security system (i.e. firewall-wise system) intended to protect a target distribution network.展开更多
The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the p...The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.展开更多
Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or ligh...Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.展开更多
The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating...The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating monitoring points suitable for an on-line monitoring system of electromagnetic environment was proposed.展开更多
Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS...Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS First.After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP,UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic.Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack.The designed scheme can be implemented easily,reduce cost significantly and shorten developing cycle.展开更多
The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a fo...The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.展开更多
The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection an...The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.展开更多
The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load...The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.展开更多
An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiven...An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.展开更多
The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear re...The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear relation to the three phase voltages. This linear relation is presented with a factorial matrix. Because each capacitive sensor is coupled with the electric field of three phases (A, B, and C), the electric coupling coefficients are introduced. In order to determine the matrix of electric coupling coefficients, the numerical calculation method can be used. From the discussion on two types of three-phase enclosed GIS bus, i.e. standard arrangement and biased arrangement, the dominant electric coupling coefficients are named, which can be simply and approximately calculated by an analytic expression. Finally, as an example, the waveforms of VFT phase voltage generated on a three-phase enclosed GIS bus model are displayed. When a capacitive sensor is located at the ’shortest point’ of phase A (or B, or C), the VFT phase voltage V A (or V B, or V C) can almost be measured by that capacitive sensor alone.展开更多
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
文摘Rural electrification remains a critical challenge in achieving equitable access to electricity, a cornerstone for poverty alleviation, economic growth, and improved living standards. Capacitor Coupled Substations (CCS) offer a promising solution for delivering cost-effective electricity to these underserved areas. However, the integration of multiple CCS units along a transmission network introduces complex interactions that can significantly impact voltage, current, and power flow. This study presents a detailed mathematical model to analyze the effects of varying distances and configurations of multiple CCS units on a transmission network, with a focus on voltage stability, power quality, and reactive power fluctuations. Furthermore, the research addresses the phenomenon of ferroresonance, a critical issue in networks with multiple CCS units, by developing and validating suppression strategies to ensure stable operation. Through simulation and practical testing, the study provides insights into optimizing CCS deployment, ultimately contributing to more reliable and efficient rural electrification solutions.
文摘This article presents an extensive examination and modeling of Capacitor Coupled Substations (CCS), noting some of their inherent constraints. The underlying implementation of a CCS is to supply electricity directly from high-voltage (HV) transmission lines to low-voltage (LV) consumers through coupling capacitors and is said to be cost-effective as compared to conventional distribution networks. However, the functionality of such substations is susceptible to various transient phenomena, including ferroresonance and overvoltage occurrences. To address these challenges, the study uses simulations to evaluate the effectiveness of conventional resistor-inductor-capacitor (RLC) filter in mitigating hazardous overvoltage resulting from transients. The proposed methodology entails using standard RLC filter to suppress transients and its associated overvoltage risks. Through a series of MATLAB/Simulink simulations, the research emphasizes the practical effectiveness of this technique. The study examines the impact of transients under varied operational scenarios, including no-load switching conditions, temporary short-circuits, and load on/off events. The primary aim of the article is to assess the viability of using an established technology to manage system instabilities upon the energization of a CCS under no-load circumstances or in case of a short-circuit fault occurring on the primary side of the CCS distribution transformer. The findings underscore the effectiveness of conventional RLC filters in suppressing transients induced by the CCS no-load switching.
基金Project 50674093 supported by the National Natural Science Foundation of China
文摘A monitoring system is an important guarantee of safety in a production mine. However, not all monitoring substations pass the electrical fast transient/burst (EFT/B) immunity test and the explosion-proof test simultaneously. To enhance the immunity, the values of capacitance and inductance should be increased, which are actually limited by coal mine explosion-proof standards. Hence, for the first time, an active filter was applied in an electromagnetic interference (EMI) output filter. As a result, the interference within 30 MHz clearly weakened, but the frequency spectrum had a wide range. An EMI input filter and ferrite beads were adopted to restrain higher frequency interference. An output interference spectrogram of the substation was obtained with an analyzer. The results indicate that the improved complex filtering markedly help to control interference. With the support of improved complex filtering and other enhancing immunity means about I/O ports, the substation managed to pass both the EFT/B immunity test and the explosion-proof test synchronously. We conclude that improved complex filtering is of vital importance in enhancing the electromagnetic compatibilitv (EMC) of the coal mine monitoring system.
基金Science and Technology Projects of Gansu Electric Power Company(No.52274514005W)
文摘The online-monitoring methods for insulation performance of current transformers of 330-750 kV substation are analyzed and compared.The effectiveness and availability of each method are discussed.Main features,advantages and disadvantages of each method and its corresponding standard are also described.
基金the scientific project supported by the National Natural Science Foundation of China (No. 61571063)supported by the Beijing Municipal Natural Science Foundation (No. 3182028)
文摘In order to deploy short-range wireless communication devices in the primary transformer substation, a Maximum Inner Product(MIP) Method is proposed to extract the path-loss parameters in 110 kV and 220 kV primary transformer substations. The maximum inner product of the testing data is calculated to find out the loss index n and the standard deviation σ, and then the pathloss models can be set up. By comparing the MIP with Minimum Mean Square estimation(MMSE) and Cumulative Sum(CUSUM), MIP can match the measured values best. In order to apply the MIP path-loss model, under the initial signal to noise ratio(SNR) at 5 dB and 10 dB, a ZigBee simulation system is constructed to validate the situation that bit error rate(BER) varies with distance. And the ZigBee devices with 5 units are tested in a 220 kV primary transformer substation. The result of the test proves that the path-loss model is accurate.
文摘International standards are being developed to promote rapid configuration and integration into the utility automation system. In order to take advantage of modern technology to provide new benefits to users of substation automation, the International Electrotechnical Commission (IEC) has developed and released a new global standard for substation automation, named IEC 61850. This aim of this paper is to provide a basic technical overview of substation automation and the standard IEC 61850. It will discuss the benefits of each major aspect of this standard and it will describe how these concepts can be used in the development and implementation of tools related to Substation Automation. The application of communication standards and protocols to facilitate data exchange within the substation environment is presented. In addition, the model is implemented using a small distribution system that plans to utilize new communication technology following the IEC 61850 standard. Finally it proposes a set of laboratories to be used as the core of an undergraduate course. Results illustrate that the communication approach as proposed by IEC 61850 fulfills the real-time requirements for control and protection of distribution system.
文摘In order to solve the problems of mining monitor and control systems during the construction process of digital mining combined with network and embedded technologies, the kernel access equipment of a mining monitor and control system was proposed and designed. It is the architecture of a mining embedded network multifunctional substation. This paper presents the design of hardware and software of the substation in detail. Finally, the system’s ef- ficiency was validated through experimentation.
文摘Different methods of calibrating ultra high frequency(UHF) sensors for gas-insulated substations(GIS) were investigated in the past.The first approach was to use strip lines,triplates and TEM calibration cells.These cells had already been in use for years for example to test the electromagnetic compatibility of electronic devices.The smaller the size of the cell,the higher its bandwidth-but the cell should be large enough to not disturb the electric field with the installed sensor under test.To overcome this problem,a calibration procedure using a gigahertz transverse electromagnetic (GTEM) test cell and a pulsed signal source were introduced in 1997.Although this procedure has many advantages and is easy to understand,measurements show several shortcomings of this calibration method.To overcome the disadvantages of the known systems,a calibration cell using a monopole cone antenna and a metallic ground plane were developed and tested.The UHF sensor was placed in a region with minimum distortion of the electric field due to its installation.Experience shows that the new method for calibrating UHF sensors is necessary in order to overcome the limits in the calibration of large sensors and to suppress the propagation of higher order modes and reflections.Due to its surprisingly simple structure,its low price and low overall measurement uncertainty,it is the preferred method for calibrating UHF sensors for GIS applications.
文摘The characters of the intelligent substation communication network structure are analyzed in the paper. Combining existing integrated automation substation hardware circuit and VLAN (Virtual Local Area Network) research foundation to optimize the network configuration. In accordance with IEC61850 standard, the network is partitioned into several VLANs based on the Tag VLAN division method of ID address. Real-time communication packets between GOOSE networks, SV (sampling information) networks, and switches use 802.1Q protocol headers to distinguish these packets. Finally, OPNET simulation software was used to simulate and verify the simplified dual-star topology. The results demonstrate that the delay and traffic bandwidth meet the requirements of actual substation operation standards. Compared with ordinary single-star networks, the reliability is greatly improved and the effectiveness is improved.
文摘Recently, most electric power substations have adopted production control systems, such as SCADA systems, which communicate with field devices and remotely control processes from a computer screen. However, these systems together with protection measures and additional control actions (using protocol IEC61850) seem not to be enough to free substations of security attacks (e.g. virus, intruders, forgery or unauthorized data manipulation). This paper analyzes the main features of an electric power substation together with the aspects that might be significantly affected by cyber-attacks. The paper also presents the implementation of a specific security system (i.e. firewall-wise system) intended to protect a target distribution network.
文摘The evaluation of the implementation effect of the power substation project can find out the problems of the project more comprehensively,which has important practical significance for the further development of the power substation project.To ensure accuracy and real-time evaluation,this paper proposes a novel hybrid intelligent evaluation and prediction model based on improved TOPSIS and Long Short-Term Memory(LSTM)optimized by a Sperm Whale Algorithm(SWA).Firstly,under the background of considering the development of new energy,the influencing factors of power substation project implementation effect are analyzed from three aspects of technology,economy and society.Moreover,an evaluation model based on improved TOPSIS is constructed.Then,an intelligent prediction model based on SWA optimized LSTM is designed.Finally,the scientificity and accuracy of the proposed model are verified by empirical analysis,and the important factors affecting the implementation effect of power substation projects are pointed out.
基金supported by National Natural Science Foundation of China(No.92067105)the science and technology project of State Grid Shanghai Municipal Electric Power Company(No.5209211900VD).
文摘Mutual influence may be driven by different models and operating mechanisms of grounding systems in multi-in-one substations.Even equipment damage and personal injury will occur in the event of a short-circuit or lightning strike.To meet the construction requirements of different multi-in-one substations,two typical application modes of grounding systems in multi-in-one substations are analyzed in this paper:plane and longitudinal layout schemes.First,the safety index and withstand voltage of secondary equipment in multi-in-one substations are introduced.Second,the plane layout scheme of grounding grids is examined.Based on a 35-kV multi-in-one substations in Shanghai,it was verified that the overall grounding grid needs to be laid to meet the safety of secondary equipment in the station.Finally,considering that it is feasible to rebuild the upper layer of a substation,the longitudinal layout scheme of the grounding grid in multi-in-one substations is also examined.Safety assessment is carried out in terms of aspects such as short-circuits and lightning strikes,and relevant optimization construction methods are analyzed.In this study,a real 35-kV substation in Shanghai was selected as an example.Simulation and field tests based on Current Distribution,Electromagnetic Fields,Grounding and Soil Structure Analysis(CDEGS)software verified that the proposed construction scheme can achieve safe operation of multi-in-one substations.This construction idea can also serve as a reference for the future construction of multi-in-one substations.
基金Supported by the Open Project of Jiangsu Key Laboratory of Environmental Engineering(ZX2017005)
文摘The characteristics and distribution law of electromagnetic environment around substations with different levels of voltage were studied,and the main influencing factors were discussed. Meanwhile,a scheme for locating monitoring points suitable for an on-line monitoring system of electromagnetic environment was proposed.
文摘Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system(SAS).This paper introduces the current applying situation about embedded Ethernet in SAS First.After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP,UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic.Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack.The designed scheme can be implemented easily,reduce cost significantly and shorten developing cycle.
基金supported by the 2020 Infrastructure Engineering Technology Innovation Projectthe“Intelligent Substation”Supporting Technology Research Project(031200WS22200001)。
文摘The reliability analysis of vertically integrated protection devices is crucial for designing International Electrotechnical Commission(IEC)61850-based substations.This paper presents the hardware architecture of a four-inone vertically integrated device and the information transmission path of each function based on the functional information transmission chain of protection devices,measurement and control devices,merging units,and intelligent terminals.Additionally,a reliability analysis model of the protection device and its protection system is constructed using the fault tree analysis method while considering the characteristics of each module of the vertically integrated device.The stability probability of the protection system in each state is analyzed by combining the state-transfer equations of line and busbar protection with a Markov chain.Finally,the failure rate and availability of the protection device and its protection system are calculated under different ambient temperatures using a 110 kV intelligent substation as an example.The sensitivity of each device module is analyzed.
基金supported by the Planning Special Project of Guangdong Power Grid Co.,Ltd.:“Study on load modeling based on total measurement and discrimination method suitable for system characteristic analysis and calculation during the implementation of target grid in Guangdong power grid”(0319002022030203JF00023).
文摘The premise and basis of load modeling are substation load composition inquiries and cluster analyses.However,the traditional kernel fuzzy C-means(KFCM)algorithm is limited by artificial clustering number selection and its convergence to local optimal solutions.To overcome these limitations,an improved KFCM algorithm with adaptive optimal clustering number selection is proposed in this paper.This algorithm optimizes the KFCM algorithm by combining the powerful global search ability of genetic algorithm and the robust local search ability of simulated annealing algorithm.The improved KFCM algorithm adaptively determines the ideal number of clusters using the clustering evaluation index ratio.Compared with the traditional KFCM algorithm,the enhanced KFCM algorithm has robust clustering and comprehensive abilities,enabling the efficient convergence to the global optimal solution.
文摘The validity of electric power system simulation or prediction models depends on static load model. Measurement- based approach is the unique method to identify them adequately. The measured power depends on both load reaction to supply voltage alteration and random process of load alteration Basically, there is no any universal method that can single out the inherent static load model from experimental data. The paper offers a proprietary technique which is the particular solution of the task. The technique considers the selection of neighboring measurement pairs with the supply voltage altering significantly be-tween them, the exclusion of selected pairs by load power factor and subsequent selection of the inherent static load model presented as the polynomial load model. The usage of the technique to identify static load model at “Fenster” industrial enterprise (in Borisov city) is presented. The ideas considered in the paper can be used for future development of static load model identification methods with the data obtained during both active experiment and in other operating models of electric power systems.
文摘An investigation into the optimal design of a substation grounding system for the transmission substation in Gaza City, Palestine has been carried out. A research into the most influential parameters on the effectiveness of the substation grid system has been performed and its results have been incorporated into the Gaza case study. Through modelling and simulating the power station in Gaza while considering some field data, an optimal substation grounding grid has been designed and has shown complete conformance to safety. It is thus considered that such a design will protect personnel in any area of the substation in addition to the installed machinery if the largest possible fault current was to traverse the earth.
文摘The measuring of VFT phase voltage in three-phase enclosed GIS is more complex and difficult than in single-phase ones. There are 3 capacitive sensors in the measuring system, the outputs of which are with a linear relation to the three phase voltages. This linear relation is presented with a factorial matrix. Because each capacitive sensor is coupled with the electric field of three phases (A, B, and C), the electric coupling coefficients are introduced. In order to determine the matrix of electric coupling coefficients, the numerical calculation method can be used. From the discussion on two types of three-phase enclosed GIS bus, i.e. standard arrangement and biased arrangement, the dominant electric coupling coefficients are named, which can be simply and approximately calculated by an analytic expression. Finally, as an example, the waveforms of VFT phase voltage generated on a three-phase enclosed GIS bus model are displayed. When a capacitive sensor is located at the ’shortest point’ of phase A (or B, or C), the VFT phase voltage V A (or V B, or V C) can almost be measured by that capacitive sensor alone.