The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^...The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.展开更多
Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were...Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.展开更多
Active free radicals formed by the electrooxidation of substituted anilines RC_6H_4NH_3 (R=H, p-Br, p-Cl, p-I, p-Me, p-COOH, p-MeCO, p-NO_2, m-CO_2H, and m-Cl) are trapped by spin trap 2-methyl-2-nitroso propane (MNP)...Active free radicals formed by the electrooxidation of substituted anilines RC_6H_4NH_3 (R=H, p-Br, p-Cl, p-I, p-Me, p-COOH, p-MeCO, p-NO_2, m-CO_2H, and m-Cl) are trapped by spin trap 2-methyl-2-nitroso propane (MNP). A multiple ESR signal of the solution containing electrolytic aniline and MNP is identified with the spin adduct of MNP and radical cation 1 by theore- tical simulation of observed spectrum. Furthermore, ESR spectra of para- or meta-substituted anilines give a reasonable explanation about spin adducts of MNP and the cation 2 or 3 by the same method.展开更多
A novel and efficient approach for the straightforward synthesis of biologically significant acenaphtho[1,2-b]quinoline derivatives in good yields utilizing CuI as a catalyst with a broad array of substrates has been ...A novel and efficient approach for the straightforward synthesis of biologically significant acenaphtho[1,2-b]quinoline derivatives in good yields utilizing CuI as a catalyst with a broad array of substrates has been developed. The strategy features as a CuI-catalyzed cascade reaction involving the formation of two new C–C bonds and one new C–N bond with high atom economy. A proposed mechanism for the reaction is described.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 20737001)
文摘The n-octanol/water partition coefficients (lgKow) of 18 substituted anilines were determined at 25 ℃ by shake-flask method. The geometrical optimization of substituted anilines has been performed at B3LYP/6-311G^** level with Gaussian98 program, and the molecular surface areas of substituted anilines were calculated using ChemOffice 2004 program. The calculated structural parameters of substituted anilines were used as theoretical descriptors and the two-parameter (molecular surface area (MA) and the energy of the highest occupied molecular orbital (EaoMo)) quantitative structure-property relationship (QSPR) model of lgKow for substituted aniline with molecular structural parameters was developed by multi-linear regression method. The regression coefficient square (r^2) is 0.990 and the standard deviation SE 0.109. The model was validated by variance inflation factors (VIF) and t-test, and the results show that there exists small self-correlation between variables of the model with perfect stability. The model gives results in good qualitative agreement with experimental data. At last, the model was applied to predict lgKow values of five substituted anilines whose lgKow values have not been determined experimentally.
基金Supported by the NNSF of China (No. 20737001)Program for Environment Protection in Jiangsu Province (201140)
文摘Octanol/water partition coefficient (Kow) is a crucial property for evaluating the environmental behavior and fate of organic compound. Herein, some quantitative structure-property relationship (QSPR) studies were performed to estimate and predict the lgK ow of substituted anilines. 2D method (multiple linear regression, MLR) and 3D method (comparative molecular field analysis, CoMFA) were applied in this study. Successful 2D and 3D models yielded the correlation coefficient (R2) values of 0.981 and 0.966 and the Leave-One-Out (LOO) cross-validated correlation coefficient (q2) values of 0.933 and 0.820, respectively. The developed models have a highly predictive ability in both internal and external validation. In addition, the results were interpreted in terms of physical and chemical meanings of descriptors and field contribution maps. It showed that the steric and electrostatic properties are the primary factors that govern the lgK ow of substituted anilines. The information obtained from the QSPR models would be helpful to the interpretation of structural features pertinent to the lgK ow of substituted anilines, which may be helpful in estimating the organic compounds' potential harm to the environment.
文摘Active free radicals formed by the electrooxidation of substituted anilines RC_6H_4NH_3 (R=H, p-Br, p-Cl, p-I, p-Me, p-COOH, p-MeCO, p-NO_2, m-CO_2H, and m-Cl) are trapped by spin trap 2-methyl-2-nitroso propane (MNP). A multiple ESR signal of the solution containing electrolytic aniline and MNP is identified with the spin adduct of MNP and radical cation 1 by theore- tical simulation of observed spectrum. Furthermore, ESR spectra of para- or meta-substituted anilines give a reasonable explanation about spin adducts of MNP and the cation 2 or 3 by the same method.
基金the National Key Technology R&D Program‘‘New Drug Innovation’’of China(No.2013ZX09402103)
文摘A novel and efficient approach for the straightforward synthesis of biologically significant acenaphtho[1,2-b]quinoline derivatives in good yields utilizing CuI as a catalyst with a broad array of substrates has been developed. The strategy features as a CuI-catalyzed cascade reaction involving the formation of two new C–C bonds and one new C–N bond with high atom economy. A proposed mechanism for the reaction is described.