Reaxgen program for the pyrolysis mechanism of cycloalkanes was adopted to simulate the heat sink of substituted cyclohexanes. Thermal cracking of cyclohexanes was performed to examine the cracking performance, wherei...Reaxgen program for the pyrolysis mechanism of cycloalkanes was adopted to simulate the heat sink of substituted cyclohexanes. Thermal cracking of cyclohexanes was performed to examine the cracking performance, wherein the substituent effects were detailedly discussed under supercritical condition. It was found that Reaxgen program played a good part in the screening and optimization of cyclohexanes. A good agreement with the experimental data for the mono-substituted and bi-substituted cyclohexanes was demonstrated, however, some deviation for the tri-substituted cyclohexanes were observed. The experiment results indicated that the gaseous product yield increased sharply for mono- substituted cyclohexanes with short substituents containing no more than two carbons. Nevertheless, continuous increase in the alkyl chain depressed the gaseous product yield smoothly. The cyclic substituent dramatically inhibited the pyrolysis of cyclohexanes. All the substituents but cyclohexyl had no obvious effect on the yield of hydrogen and olefins (≤C4). For bi-substituted cyclohexanes, the more close the distance between the two substituents, the higher the gaseous product yield was obtained. However, opposite result on the selectivity to hydrogen and olefins (≤C4) was generally obtained except 1,3-dimethylcyclohexane. The position of tri-substituents acted little significance on the gaseous product yield, as well as the selectivity to hydrogen and olefins (≤C4).展开更多
Three asymmetrically substituted cyclohexanes were prepared from one-pot reactions of aldehydes and methylketones, and the products were characterized by single crystal structure analysis, NMR spectroscopy and microan...Three asymmetrically substituted cyclohexanes were prepared from one-pot reactions of aldehydes and methylketones, and the products were characterized by single crystal structure analysis, NMR spectroscopy and microanalysis.展开更多
基金supported by the Special Program for Key Basic Research in China(Grant No.0040202204)
文摘Reaxgen program for the pyrolysis mechanism of cycloalkanes was adopted to simulate the heat sink of substituted cyclohexanes. Thermal cracking of cyclohexanes was performed to examine the cracking performance, wherein the substituent effects were detailedly discussed under supercritical condition. It was found that Reaxgen program played a good part in the screening and optimization of cyclohexanes. A good agreement with the experimental data for the mono-substituted and bi-substituted cyclohexanes was demonstrated, however, some deviation for the tri-substituted cyclohexanes were observed. The experiment results indicated that the gaseous product yield increased sharply for mono- substituted cyclohexanes with short substituents containing no more than two carbons. Nevertheless, continuous increase in the alkyl chain depressed the gaseous product yield smoothly. The cyclic substituent dramatically inhibited the pyrolysis of cyclohexanes. All the substituents but cyclohexyl had no obvious effect on the yield of hydrogen and olefins (≤C4). For bi-substituted cyclohexanes, the more close the distance between the two substituents, the higher the gaseous product yield was obtained. However, opposite result on the selectivity to hydrogen and olefins (≤C4) was generally obtained except 1,3-dimethylcyclohexane. The position of tri-substituents acted little significance on the gaseous product yield, as well as the selectivity to hydrogen and olefins (≤C4).
文摘Three asymmetrically substituted cyclohexanes were prepared from one-pot reactions of aldehydes and methylketones, and the products were characterized by single crystal structure analysis, NMR spectroscopy and microanalysis.