期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (N_(PCS)) 被引量:15
1
作者 ZHENG Qing WANG Lian-Sheng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第8期933-938,共6页
20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the ... 20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G^* and 6-311G^* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-lgEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R^2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -lgEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q^2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods. 展开更多
关键词 CHLOROPHENOL toxicity (-lgEC50) linear dissolving energy theory density functional theory (DFT) substitutive position of chlorine atom (NPCS) QSAR
下载PDF
Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells 被引量:5
2
作者 Youdi Zhang Yong Wang +7 位作者 Ruijie Ma Zhenghui Luo Tao Liu So-Huei Kang He Yan Zhongyi Yuan Changduk Yang Yiwang Chen 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第8期797-805,I0005,共10页
In this study,wide bandgap(WBG)two-dimensional(2D)copolymer donors(DZ1,DZ2,and DZ3)based on benzodithiophene(BDT)on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluoro... In this study,wide bandgap(WBG)two-dimensional(2D)copolymer donors(DZ1,DZ2,and DZ3)based on benzodithiophene(BDT)on alkoxyphenyl conjugated side chains without and with different amounts of chlorine atoms and difluorobenzotriazole(FBTZ)are designed and synthesized successfully for efficient non-fullerene polymer solar cells(PSCs).Three polymer donors DZ1,DZ2,and DZ3 display similar absorption spectra at 300-700 nm range with optional band-gap(Egopt)of 1.84,1.92,and 1.97 eV,respectively.Compared with reported DZ1 without chlorine substitution,it is found that introducing chlorine atoms into the meta-position of the alkoxyphenyl group affords polymer possessing a deeper the highest occupied molecular orbital(HOMO)energy level,which can increase open circuit voltage(Voc)of PSCs,as well as improve hole mobility.Non-fullerene bulk heterojunction PSCs based on DZ2:MelC demonstrate a relatively high power conversion efficiency(PCE)of 10.22%with a Voc of 0.88 V,a short-circuit current density(Jsc)of 17.62 mA/cm^2,and a fill factor(FF)of 68%,compared with PSCs based on DZ1:MelC(a PCE of 8.26%)and DZ3:MelC(a PCE of 6.28%).The results imply that adjusting chlorine atom amount on alkoxyphenyl side chains based on BDT polymer donors is a promising approach of synthesizing electron-rich building block for high performance of PSCs. 展开更多
关键词 Wide-bandgap copolymer Organic solar cells Polymer donors Chlorine substitution Nonfullerene polymer solar cells
原文传递
Chlorinated polymerized small molecule acceptor enabling ternary all-polymer solar cells with over 16.6% efficiency 被引量:3
3
作者 Ke Hu Jiaqi Du +8 位作者 Can Zhu Wenbin Lai Jing Li Jingming Xin Wei Ma Zhanjun Zhang Jinyuan Zhang Lei Meng Yongfang Li 《Science China Chemistry》 SCIE EI CSCD 2022年第5期954-963,共10页
Recently,all-polymer solar cells(all-PSCs) based on polymerized small molecule acceptors(PSMAs) have achieved significant progress.Ternary blending has proven to be an effective strategy to further boost the power con... Recently,all-polymer solar cells(all-PSCs) based on polymerized small molecule acceptors(PSMAs) have achieved significant progress.Ternary blending has proven to be an effective strategy to further boost the power conversion efficiency(PCE) of the all-PSCs.Herein,a new A-DA′D-A small-molecule acceptor-based PSMA(named as PYCl-T) was designed and synthesized,which possesses similar polymer backbone with the widely used PY-IT,but with chlorine substitution on the A-end groups in the A-DA′D-A structure.PYCl-T was then employed as the third component into the PM6:PY-IT system and the ternary all-PSCs based on PM6:PY-IT:PYCl-T demonstrated a high PCE of 16.62%(certified value of 16.3%).Moreover,the PCE of 15.52% was realized in the enlarged ternary all-PSCs with effective area of 1 cm^(2),indicating the great potential in large-scale applications.Moreover,the optimized ternary blend films of PM6:PY-IT:PYCl-T show excellent thermal stability at 150 ℃.This work demonstrates that the utilization of a ternary blend system involving two well-compatible PSMA polymer acceptors is an effective strategy to boost the performance of the all-PSCs. 展开更多
关键词 all-polymer solar cells polymerized small molecular acceptors chlorine substitution ternary all polymer solar cells stability
原文传递
Conformation preference and related intramolecular noncovalent interaction of selected short chain chlorinated paraffins
4
作者 Yuzhen Sun Wenxiao Pan +2 位作者 Jianjie Fu Aiqian Zhang Qinghua Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第3期338-349,共12页
Short chain chlorinated paraffins (SCCPs) are not only research focus of environmental issues but also interesting model mol- ecules for organic chemistry which exhibit diverse conformation preference and intramolec... Short chain chlorinated paraffins (SCCPs) are not only research focus of environmental issues but also interesting model mol- ecules for organic chemistry which exhibit diverse conformation preference and intramolecular noncovalent interactions (NCIs). A systematic study was conducted to reveal the conlk)rmation preference and the related intramolecular NCIs in two C^-isomers of SCCPs, 5,5,6,6-tetrachlorodecane and 4,4,6,6-1etrachlorodecane. The overall conformation profile was deter- mined on the basis of relative energies calculated at the MP2/6-311++G(d,p) level with the geometries optimized by B3LYP/6-31 l++G(d,p) method. Then, quantum theory of atoms in molecules (QTAIM) has been adopted to identify the NCls in the selected conformers of the model molecules at both B31~YP/6-31 l++G(d,p) and M06-2X/aug-cc-pvdz level. Different chlorine substitution modes result in varied conformation preference. No obvious gauche effect can be observed tk)r the SCCPs with chlorination on adjacent carbon atoms. The most stable conformer of 5,5,6,6-tetrachlorodecane (tTt) has its three dihedral angles in the T configuration, and there is no intramolecular N(3s found in this molecule. On the contrary, the chlorination on interval carbon atoms favors the adoption of gauche configmation for the H C C CI axis. Not only inlramolecular H-..CI contacts but also H---H interactions have been identified as driving forces to compensate the instability from steric crowding ot the gauche configuration. The gggg and g'g'g'g' conformers are the most popular ones, while the populations of tggg and tg'g'g' conformer are second to those of the gggg and g'g'g'g' conformers. Meanwhile, the M06-2X method with large basis sets is preferred for identification of subtle intramolecular NCIs in large molecules like SCCPs. 展开更多
关键词 short chain chlorinated paraffins intramolecular noncovalent interactions conformation preference chlorination substitution mode
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部