The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure curren...The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.展开更多
The cause of substorm onset is not yet understood. Chen CX(2016) proposed an entropy switch model, in which substorm onset results from the development of interchange instability. In this study, we sought observationa...The cause of substorm onset is not yet understood. Chen CX(2016) proposed an entropy switch model, in which substorm onset results from the development of interchange instability. In this study, we sought observational evidence for this model by using Time History of Events and Macroscale Interactions during Substorms(THEMIS) data. We examined two events, one with and the other without a streamer before substorm onset. In contrast to the stable magnetosphere, where the total magnetic field strength is a decreasing function and entropy is an increasing function of the downtail distance, in both events the total magnetic field strength and entropy were reversed before substorm onset. After onset, the total magnetic field strength, entropy, and other plasma quantities fluctuated. In addition, a statistical study was performed. By confining the events with THEMIS satellites located in the downtail region between ~8 and ~12 Earth radii, and 3 hours before and after midnight, we found the occurrence rate of the total magnetic field strength reversal to be 69% and the occurrence rate of entropy reversal to be 77% of the total 205 events.展开更多
With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal p...With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal properties of substorm dipolarizations in the near-Earth plasma sheet(NEPS)during a substorm at 03:23 UT on 12 February 2008.Substorm dipolarizations with different features are detected by three near-Earth THEMIS probes(THA(P5),THD(P3)and THE(P4))in the magnetotail.In the current sheet with a large plasma beta value(β>2,whereβis the ratio of the plasma thermal pressure to the magnetic pressure),the dipolarization within the substorm onset region,(−10.4,2.8,−2.6)RE_gsm,has a large initial magnetic field elevation angle,θ>60°,θ=arctan(Bz/(Bx2+By2)1/2),and is accompanied by energetic ion(tens to hundred keV)dispersionless injection detected by THD(P3).This substorm onset dipolarization is characterized by Bx and By components around 0 nT with significant fluctuations.The Bz component increases sharply and its subsequent magnitude approaches the total magnetic field,Bt.The maximum value of the elevation angle approaches 85°during the later substorm expansion phase.In the NEPS withβ~1,the dipolarization outside the substorm onset region is characterized by a magnetic elevation angle with a small beginning value ofθ<45°and following multi-step enhancements during the substorm expansion phase.The maximum value of the elevation angle approaches to 70°during the later substorm expansion phase.Our observation results indicate that characteristics of dipolarization with a large beginning elevation angle within the substorm onset region provide a new indicator to identify substorm onset location.展开更多
The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ul...The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ultraviolet Spectrographic Imager(SSUSI) images are used to investigate the plasmaspheric evolutions during substorms. The most important finding is a nightside pointing plasmaspheric plume observed at 23:05 UT on 21 April 2014 under quiet solar wind and geomagnetic conditions, which drifted from the dusk sector. High correlations between the plasmapause evolutions and the auroral signatures exist during substorms. After substorm onset, the plasmapause erosion and the equatorward expansion of the auroral oval occur almost simultaneously in both MLT and UT, and then both the erosion and the expansion propagate westward and eastward. It is suggested that the plasmaspheric erosion and its MLT propagations are induced by the enhanced earthward plasma convection during substorm period, and the substorm dipolarization causes pitch-angle scattering of plasma sheet electrons and the resulting precipitation excites aurora emissions at the same time.展开更多
Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric ...Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.展开更多
This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts s...This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts such as magnetotail and reconnection were established and the leading model of the substorm was introduced.The second part is an overview of the research conducted in recent years(1995-2010)when very significant advances have been achieved in understanding the substorm physics by virtue of several major satellites missions that addressed the magnetotail physics intensively.展开更多
Both theory and simulation have played important roles in defining and illuminating the key mechanisms involved in substorms.Basic theories of magnetic reconnection and of interchange and ballooning instabilities were...Both theory and simulation have played important roles in defining and illuminating the key mechanisms involved in substorms.Basic theories of magnetic reconnection and of interchange and ballooning instabilities were developed more than 50 years ago,and these plasma physical concepts have been central in discussions of substorm physics.A vast amount of research on reconnection,including both theoretical and computational studies,has helped provide a picture of how reconnection operates in the collisionless environment of the magnetosphere.Still,however,we do not fully understand how key microscale processes and large-scale dynamics work together to determine the location and rate of reconnection.While in the last twenty years,it has become clear that interchange processes are important for transporting plasma through the plasma sheet in the form of bursty bulk flows and substorm expansions,we still have not reached the point where simulations are able to realistically and defensibly represent all of the important aspects of the phenomenon.More than two decades ago it was suggested that the ballooning instability,the basic theory for which dates from the 1950s,may play an important role in substorms.Now the majority of experts agree that regions of the plasma sheet are often linearly unstable to ideal-MHD ballooning.However,it is also clear that kinetic effects introduce important modifications to the MHD stability criterion.It is still uncertain whether ballooning plays a leading role in substorms or has just a minor part.Among the different types of simulations that have been applied to the substorm problem,global MHD codes are unique in that,in a sense, they represent the entire global substorm phenomenon,including coupling to the solar wind and ionosphere, and the important mechanisms of reconnection,interchange,and ballooning.However,they have not yet progressed to the point where they can accurately represent the whole phenomenon,because grid-resolution problems limit the accuracy with which they can solve the equations of ideal MHD and the couphng to the ionosphere,and they cannot accurately represent small-scale processes that violate ideal MHD.展开更多
Geomagnetic storms and substorms play a central role in both the daily life of mankind and in academic space physics.The profiles of storms,especially their initial phase morphology and the intensity of their substorm...Geomagnetic storms and substorms play a central role in both the daily life of mankind and in academic space physics.The profiles of storms,especially their initial phase morphology and the intensity of their substorms under different interplanetary conditions,have usually been ignored in previous studies.In this study,97 intense geomagnetic storms(Dstmin≤–100 nT)between 1998 and 2018 were studied statistically using the double superposed epoch analysis(DSEA)and normalized superposed epoch analysis(NSEA)methods.These storms are categorized into two types according to different interplanetary magnetic field(IMF)Bz orientations:geomagnetic storms whose IMF is northward,both upstream and downstream relative to the interplanetary shock,and geomagnetic storms whose upstream and downstream IMF is consistently southward.We further divide these two types into two subsets,by different geomagnetic storm profiles:Type Ⅰ/Type Ⅱ—one/two-step geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock;Type Ⅲ/TypeⅣ—one/two-step geomagnetic storms with southward IMF both upstream and downstream of the interplanetary shock.The results show that:(1)geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock have a clear initial phase;geomagnetic storms with southward IMF in both upstream and downstream of the interplanetary shock do not;(2)the IMF is an important controlling factor in affecting the intensity characteristics of substorms.When Bz is positive before and after the interplanetary shock arrival,the Auroral Electrojet(AE)index changes gently during the initial phase of geomagnetic storms,the median value of AE index is maintained at 500–1000 nT;(3)when Bz is negative before and after the interplanetary shock arrival,the AE index rises rapidly and reaches its maxmum value about one hour after storm sudden commencements(SSC),although the time is scaled between reference points and the maximum value of AE is usually greater than 1,000 nT,representing intense substorms;(4)for most cases,the Dst0 usually reaches its minimum at least one hour after Bz.These results are useful in improving contemporary space weather models,especially for those that address geomagnetic storms and substorms.展开更多
The characteristics of a strong aurora substorm observed at Antarctic Zhongshan station (magnetic latitude=74.5°) on 8 April, 1999, were discussed and analyzed. The developing steps of the aurora substorm that ha...The characteristics of a strong aurora substorm observed at Antarctic Zhongshan station (magnetic latitude=74.5°) on 8 April, 1999, were discussed and analyzed. The developing steps of the aurora substorm that happened in dusk time were almost the same with that of midnight aurora substorm. The averaged moving speed of the aurora arc toward pole area during the substorm expansion phase was about 3.0 km/s, westward-traveling surge speed was about 2.0 km/s. The extension from south to north in the substorm can cover 1100 km in distance.展开更多
This paper gives a brief account of substorm modeling with different key elements or factors. The progress of our understanding of substorms consists of three chief stages during this century. Nine previous substorm m...This paper gives a brief account of substorm modeling with different key elements or factors. The progress of our understanding of substorms consists of three chief stages during this century. Nine previous substorm models are briefly recapitulated, and then a recent two neutral-points model by Prof. C.T. Russell is introduced. In order to test or to strengthen this new model, several correlated examples of meaningful data are duly given in this short paper.展开更多
This paper discusses the problems we confront in the study of magnetospheric substorms. This includes the global processes of magnetospheric substorms, the origin of the southern-northern component of interplanetary m...This paper discusses the problems we confront in the study of magnetospheric substorms. This includes the global processes of magnetospheric substorms, the origin of the southern-northern component of interplanetary magnetic field, quantitative effects of the interplanetary conditions, driving processes of the solar wind, location of the triggering of the expansion phase, and relationship between magnetospheric storms and substorms. Moreover, the research directions in the future have also been discussed.展开更多
Magnetic reconnection is one of the most important,dynamic phenomena in the magnetotail in terms of magnetic field line configuration change and energy release.It is believed to occur in the distant magnetotail mainly...Magnetic reconnection is one of the most important,dynamic phenomena in the magnetotail in terms of magnetic field line configuration change and energy release.It is believed to occur in the distant magnetotail mainly during southward interplanetary magnetic field periods and in the near-Earth magnetotail in association with substorms.In the present paper,we discuss several important issues concerning magnetic reconnection in the magnetotail associated with substorms,such as reconnection signatures,location,timing,spatial scale,and behavior,from the macroscopic,observational point of view.展开更多
The auroral electrojet index is an important index in monitoring and predicting substorms.A substorms usually includes auroral breakup,auroral electrojet event marked by AE increase,energetic particle injection at geo...The auroral electrojet index is an important index in monitoring and predicting substorms.A substorms usually includes auroral breakup,auroral electrojet event marked by AE increase,energetic particle injection at geosynchronous orbit,mid-low latitude Pi2,etc.However the question whether an auroral electrojet event corresponds to a substorms remains unanswered.Using the auroral electrojet index in 2004,we analyzed five auroral electrojet events and studied their relation with substorms.The results show that there are three kinds of auroral electrojet events:(1) simultaneous rapid increase of westward auroral electrojet and eastward auroral electrojet;(2) rapid increase of westward auroral electrojet and almost unchangeable eastward auroral electrojet;(3) rapid increase of eastward auroral electrojet and almost unchangeable westward auroral electrojet.Most of auroral electrojet events correspond to substorms.However a few auroral electrojet events are not accompanied by substorms.This situation most often occurs for the auroral electrojet event in which eastward auroral electrojet dominates.展开更多
Substorm processes have been studied in detail,and it is well known that interplanetary(IP)shock encountering the terrestrial magnetosphere causes global responses.However,how IP shock compression to the magnetosphere...Substorm processes have been studied in detail,and it is well known that interplanetary(IP)shock encountering the terrestrial magnetosphere causes global responses.However,how IP shock compression to the magnetosphere affects the development of an ongoing substorm remains uninvestigated.Herein,the simultaneous satellite and ground-based auroral evolutions associated with an IP shock impact on the magnetopause during an ongoing substorm on May 7th,2005,were examined.The IMAGE satellite over the Southern Hemisphere captured the global development substorm,which was initiated at 17:38:47 UT.The poleward branch of the nightside auroral oval was fortuitously monitored by an all-sky camera at the Zhongshan Station(-74.5°magnetic latitude,ZHO)in Antarctica.The satellite imager observed continuous brightening and broadening of the nightside auroral oval after the IP shock arrival.The simultaneous ground-based optical aurora measurement displayed the intensification and expansion of a preexisting auroral surge poleward of the aurora oval.The geomagnetic field variations and the instantly increased PC indices indicated an elevated merging rate and enhanced the convection-related DP-2 currents.Therefore,this IP shock transient impact did not significantly change the ongoing development of the substorm,although it meets the magnetospheric precondition hypothesis.展开更多
Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailwar...Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailward high-speed flows (Vx ~ -350 km/s) were first seen at about X ~ -13.2 RE in near-Earth magnetotail, one minute later the flows reversed from tailward to earthward. The reversal process occurred quickly after the substorm expansion onset. The near-Earth magnetotail plasma sheet was one of key regions for substorm onset. Our analysis showed that the ion flow reversal from tailward to earthward was likely to be in close relation with the substorm expansion initiation and might play an important role in trigger-ing the substorm expansion onset.展开更多
Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started about 1-2 min after pressure s...Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started about 1-2 min after pressure shocks arrived at dayside magnetopause, then nightside auroras intensified rapidly 3-4 min later, with auroral sub-storm onset. The observations in synchronous orbit indicated that the compressing effects on magnetosphere were observed in their corresponding sites about 2 min after the pressure shocks impulse magnetopause. We propose that the auroral intensification and substorm onset possibly result from hydromagnetic wave produced by the pressure shock. The fast-mode wave propagates across the magnetotail lobes with higher local Alfven velocity, magnetotail was compressed rapidly and strong lobe field and cross-tail current were built in about 1-2 min, and furthermore the substorm was triggered due to an instability in current sheet.展开更多
Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them wer...Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/ TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observations are made close to the magnetic equatorial plane, our results are important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.展开更多
We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rat...We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rate of earthward BBFs increases with distance from the Earth up to ?19 RE,which is in agreement with the previous observations of the radial evolution of BBFs.About 54% of earthward BBFs in expansion phase have a velocity larger than 600 km/s,whereas only 38% of earthward BBFs in growth and recovery phases have a velocity larger than 600 km/s.The average velocity of earthward BBFs in expansion phase is 732 km/s,larger than those in growth phase(631 km/s) and recovery phase(617 km/s).The durations of earthward BBFs decrease with the decrease of downtail distance from Earth due to the braking of earthward BBFs.The duration of earthward BBFs in expansion phase is larger than that in growth and recovery phases.The average durations in growth,expansion,and recovery phases are respectively 49.3,71.5,and 47.6 s.Therefore,the ratios of transports of energy of earthward BBFs in growth,expansion,and recovery phases can be estimated to be 0.51:1:0.47.Thus,the earthward BBFs in the expansion phase have the largest capability of the transport of energy and can produce the largest braking effects,such as inertial currents and auroral activities.展开更多
文摘The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.
基金supported by the National Natural Science Foundation of China(Grant No.NSFC41974204)。
文摘The cause of substorm onset is not yet understood. Chen CX(2016) proposed an entropy switch model, in which substorm onset results from the development of interchange instability. In this study, we sought observational evidence for this model by using Time History of Events and Macroscale Interactions during Substorms(THEMIS) data. We examined two events, one with and the other without a streamer before substorm onset. In contrast to the stable magnetosphere, where the total magnetic field strength is a decreasing function and entropy is an increasing function of the downtail distance, in both events the total magnetic field strength and entropy were reversed before substorm onset. After onset, the total magnetic field strength, entropy, and other plasma quantities fluctuated. In addition, a statistical study was performed. By confining the events with THEMIS satellites located in the downtail region between ~8 and ~12 Earth radii, and 3 hours before and after midnight, we found the occurrence rate of the total magnetic field strength reversal to be 69% and the occurrence rate of entropy reversal to be 77% of the total 205 events.
基金supported by the National Natural Science Foundation of China(NSFC)under grants 41731070,41674167,41574161the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences,grants XDA15052500,XDA15350201 and XDA15011401the Specialized Research Fund for State Key Laboratories of China.
文摘With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal properties of substorm dipolarizations in the near-Earth plasma sheet(NEPS)during a substorm at 03:23 UT on 12 February 2008.Substorm dipolarizations with different features are detected by three near-Earth THEMIS probes(THA(P5),THD(P3)and THE(P4))in the magnetotail.In the current sheet with a large plasma beta value(β>2,whereβis the ratio of the plasma thermal pressure to the magnetic pressure),the dipolarization within the substorm onset region,(−10.4,2.8,−2.6)RE_gsm,has a large initial magnetic field elevation angle,θ>60°,θ=arctan(Bz/(Bx2+By2)1/2),and is accompanied by energetic ion(tens to hundred keV)dispersionless injection detected by THD(P3).This substorm onset dipolarization is characterized by Bx and By components around 0 nT with significant fluctuations.The Bz component increases sharply and its subsequent magnitude approaches the total magnetic field,Bt.The maximum value of the elevation angle approaches 85°during the later substorm expansion phase.In the NEPS withβ~1,the dipolarization outside the substorm onset region is characterized by a magnetic elevation angle with a small beginning value ofθ<45°and following multi-step enhancements during the substorm expansion phase.The maximum value of the elevation angle approaches to 70°during the later substorm expansion phase.Our observation results indicate that characteristics of dipolarization with a large beginning elevation angle within the substorm onset region provide a new indicator to identify substorm onset location.
基金supported by National Natural Science Foundation of China (41674155 and 41274147)Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017258)Key Research Project of Chinese Academy of Sciences:Application Research on the Scientific Data from Chang’E-3 Mission (KGZD-EW-603)
文摘The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ultraviolet Spectrographic Imager(SSUSI) images are used to investigate the plasmaspheric evolutions during substorms. The most important finding is a nightside pointing plasmaspheric plume observed at 23:05 UT on 21 April 2014 under quiet solar wind and geomagnetic conditions, which drifted from the dusk sector. High correlations between the plasmapause evolutions and the auroral signatures exist during substorms. After substorm onset, the plasmapause erosion and the equatorward expansion of the auroral oval occur almost simultaneously in both MLT and UT, and then both the erosion and the expansion propagate westward and eastward. It is suggested that the plasmaspheric erosion and its MLT propagations are induced by the enhanced earthward plasma convection during substorm period, and the substorm dipolarization causes pitch-angle scattering of plasma sheet electrons and the resulting precipitation excites aurora emissions at the same time.
基金supported by National Natural Science Foundation of China grants 41631071, 41774170, 41274174, 41174125, 41131065, 41421063, 41231066 and 41304134Chinese Academy of Sciences grants KZCX2-EW-QN510 and KZZD-EW-01-4+2 种基金CAS Key Research Program of Frontier Sciences grant QYZDB-SSWDQC015National Key Basic Research Special Foundation of China Grant No. 2011CB811403Fundamental Research Funds for the Central Universities WK2080000077
文摘Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause.However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band(< 0.1 f_(ce)). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.
文摘This is a concise review of physics of the substorm in the magnetotail.It consists of two parts. The first part summarizes historical developments in the early days of the space age(1960-1975)when the basic concepts such as magnetotail and reconnection were established and the leading model of the substorm was introduced.The second part is an overview of the research conducted in recent years(1995-2010)when very significant advances have been achieved in understanding the substorm physics by virtue of several major satellites missions that addressed the magnetotail physics intensively.
基金supported by the NASA Heliospheric Theory Program under grant NNX08AI55G
文摘Both theory and simulation have played important roles in defining and illuminating the key mechanisms involved in substorms.Basic theories of magnetic reconnection and of interchange and ballooning instabilities were developed more than 50 years ago,and these plasma physical concepts have been central in discussions of substorm physics.A vast amount of research on reconnection,including both theoretical and computational studies,has helped provide a picture of how reconnection operates in the collisionless environment of the magnetosphere.Still,however,we do not fully understand how key microscale processes and large-scale dynamics work together to determine the location and rate of reconnection.While in the last twenty years,it has become clear that interchange processes are important for transporting plasma through the plasma sheet in the form of bursty bulk flows and substorm expansions,we still have not reached the point where simulations are able to realistically and defensibly represent all of the important aspects of the phenomenon.More than two decades ago it was suggested that the ballooning instability,the basic theory for which dates from the 1950s,may play an important role in substorms.Now the majority of experts agree that regions of the plasma sheet are often linearly unstable to ideal-MHD ballooning.However,it is also clear that kinetic effects introduce important modifications to the MHD stability criterion.It is still uncertain whether ballooning plays a leading role in substorms or has just a minor part.Among the different types of simulations that have been applied to the substorm problem,global MHD codes are unique in that,in a sense, they represent the entire global substorm phenomenon,including coupling to the solar wind and ionosphere, and the important mechanisms of reconnection,interchange,and ballooning.However,they have not yet progressed to the point where they can accurately represent the whole phenomenon,because grid-resolution problems limit the accuracy with which they can solve the equations of ideal MHD and the couphng to the ionosphere,and they cannot accurately represent small-scale processes that violate ideal MHD.
文摘Geomagnetic storms and substorms play a central role in both the daily life of mankind and in academic space physics.The profiles of storms,especially their initial phase morphology and the intensity of their substorms under different interplanetary conditions,have usually been ignored in previous studies.In this study,97 intense geomagnetic storms(Dstmin≤–100 nT)between 1998 and 2018 were studied statistically using the double superposed epoch analysis(DSEA)and normalized superposed epoch analysis(NSEA)methods.These storms are categorized into two types according to different interplanetary magnetic field(IMF)Bz orientations:geomagnetic storms whose IMF is northward,both upstream and downstream relative to the interplanetary shock,and geomagnetic storms whose upstream and downstream IMF is consistently southward.We further divide these two types into two subsets,by different geomagnetic storm profiles:Type Ⅰ/Type Ⅱ—one/two-step geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock;Type Ⅲ/TypeⅣ—one/two-step geomagnetic storms with southward IMF both upstream and downstream of the interplanetary shock.The results show that:(1)geomagnetic storms with northward IMF both upstream and downstream of the interplanetary shock have a clear initial phase;geomagnetic storms with southward IMF in both upstream and downstream of the interplanetary shock do not;(2)the IMF is an important controlling factor in affecting the intensity characteristics of substorms.When Bz is positive before and after the interplanetary shock arrival,the Auroral Electrojet(AE)index changes gently during the initial phase of geomagnetic storms,the median value of AE index is maintained at 500–1000 nT;(3)when Bz is negative before and after the interplanetary shock arrival,the AE index rises rapidly and reaches its maxmum value about one hour after storm sudden commencements(SSC),although the time is scaled between reference points and the maximum value of AE is usually greater than 1,000 nT,representing intense substorms;(4)for most cases,the Dst0 usually reaches its minimum at least one hour after Bz.These results are useful in improving contemporary space weather models,especially for those that address geomagnetic storms and substorms.
基金Sup POrted by the National Natural Science FOundation of China(4 96 3416 0 )
文摘The characteristics of a strong aurora substorm observed at Antarctic Zhongshan station (magnetic latitude=74.5°) on 8 April, 1999, were discussed and analyzed. The developing steps of the aurora substorm that happened in dusk time were almost the same with that of midnight aurora substorm. The averaged moving speed of the aurora arc toward pole area during the substorm expansion phase was about 3.0 km/s, westward-traveling surge speed was about 2.0 km/s. The extension from south to north in the substorm can cover 1100 km in distance.
文摘This paper gives a brief account of substorm modeling with different key elements or factors. The progress of our understanding of substorms consists of three chief stages during this century. Nine previous substorm models are briefly recapitulated, and then a recent two neutral-points model by Prof. C.T. Russell is introduced. In order to test or to strengthen this new model, several correlated examples of meaningful data are duly given in this short paper.
文摘This paper discusses the problems we confront in the study of magnetospheric substorms. This includes the global processes of magnetospheric substorms, the origin of the southern-northern component of interplanetary magnetic field, quantitative effects of the interplanetary conditions, driving processes of the solar wind, location of the triggering of the expansion phase, and relationship between magnetospheric storms and substorms. Moreover, the research directions in the future have also been discussed.
基金Supported in part by the Global COE Program of Nagoya University "Quest for Fundamental Principles in the Universe(QFPU)" from JSPS and MEXT of Japan
文摘Magnetic reconnection is one of the most important,dynamic phenomena in the magnetotail in terms of magnetic field line configuration change and energy release.It is believed to occur in the distant magnetotail mainly during southward interplanetary magnetic field periods and in the near-Earth magnetotail in association with substorms.In the present paper,we discuss several important issues concerning magnetic reconnection in the magnetotail associated with substorms,such as reconnection signatures,location,timing,spatial scale,and behavior,from the macroscopic,observational point of view.
基金Supported by the Pilot Project of the Knowledge Innovation Program of Chinese Academy of Sciences
文摘The auroral electrojet index is an important index in monitoring and predicting substorms.A substorms usually includes auroral breakup,auroral electrojet event marked by AE increase,energetic particle injection at geosynchronous orbit,mid-low latitude Pi2,etc.However the question whether an auroral electrojet event corresponds to a substorms remains unanswered.Using the auroral electrojet index in 2004,we analyzed five auroral electrojet events and studied their relation with substorms.The results show that there are three kinds of auroral electrojet events:(1) simultaneous rapid increase of westward auroral electrojet and eastward auroral electrojet;(2) rapid increase of westward auroral electrojet and almost unchangeable eastward auroral electrojet;(3) rapid increase of eastward auroral electrojet and almost unchangeable westward auroral electrojet.Most of auroral electrojet events correspond to substorms.However a few auroral electrojet events are not accompanied by substorms.This situation most often occurs for the auroral electrojet event in which eastward auroral electrojet dominates.
基金supported by the National Key R&D Program of China(Grant No.2021YFE0106400)the National Scientific Foundation of China(Grant Nos.42120104003,41974185 and 42130210)+3 种基金Shanghai Science and Technology Innovation Action Plan(Grant Nos.21DZ1206100 and 22ZR1481200)SOA Key Laboratory for Polar Science(Grant No.KP201703)Chinese Meridian ProjectMNR Innovative Youth Talents Program(Grant No.12110600000018003921)。
文摘Substorm processes have been studied in detail,and it is well known that interplanetary(IP)shock encountering the terrestrial magnetosphere causes global responses.However,how IP shock compression to the magnetosphere affects the development of an ongoing substorm remains uninvestigated.Herein,the simultaneous satellite and ground-based auroral evolutions associated with an IP shock impact on the magnetopause during an ongoing substorm on May 7th,2005,were examined.The IMAGE satellite over the Southern Hemisphere captured the global development substorm,which was initiated at 17:38:47 UT.The poleward branch of the nightside auroral oval was fortuitously monitored by an all-sky camera at the Zhongshan Station(-74.5°magnetic latitude,ZHO)in Antarctica.The satellite imager observed continuous brightening and broadening of the nightside auroral oval after the IP shock arrival.The simultaneous ground-based optical aurora measurement displayed the intensification and expansion of a preexisting auroral surge poleward of the aurora oval.The geomagnetic field variations and the instantly increased PC indices indicated an elevated merging rate and enhanced the convection-related DP-2 currents.Therefore,this IP shock transient impact did not significantly change the ongoing development of the substorm,although it meets the magnetospheric precondition hypothesis.
基金the National Natural Science Foundation of China (Grant Nos. 40620130094, 40731054, 40704027, 40390150)
文摘Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailward high-speed flows (Vx ~ -350 km/s) were first seen at about X ~ -13.2 RE in near-Earth magnetotail, one minute later the flows reversed from tailward to earthward. The reversal process occurred quickly after the substorm expansion onset. The near-Earth magnetotail plasma sheet was one of key regions for substorm onset. Our analysis showed that the ion flow reversal from tailward to earthward was likely to be in close relation with the substorm expansion initiation and might play an important role in trigger-ing the substorm expansion onset.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49974033 and 49634160).
文摘Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started about 1-2 min after pressure shocks arrived at dayside magnetopause, then nightside auroras intensified rapidly 3-4 min later, with auroral sub-storm onset. The observations in synchronous orbit indicated that the compressing effects on magnetosphere were observed in their corresponding sites about 2 min after the pressure shocks impulse magnetopause. We propose that the auroral intensification and substorm onset possibly result from hydromagnetic wave produced by the pressure shock. The fast-mode wave propagates across the magnetotail lobes with higher local Alfven velocity, magnetotail was compressed rapidly and strong lobe field and cross-tail current were built in about 1-2 min, and furthermore the substorm was triggered due to an instability in current sheet.
基金the National Natural Science Foundation of China (Grant Nos. 40621003, 40523006, 40704028, 40604018)973 Program of China (Grant No. 2006CB806305)the Specialized Research Fund for State Key Laboratories of China.
文摘Using the data of LFEW/TC-2, we studied the dawn side chorus around substorm onsets during a strong geomagnetic storm in November 2004. During this storm, LFEW/TC-2 observed 14 dawnside chorus events. Nine of them were associated with substorms and occurred within 40 min around the substorm onsets. The fre-quencies of waves have a very good correlation with the half equatorial electron cyclotron frequencies. Chorus can be excited in the region near magnetic equato-rial plane and then propagate to the mid and high latitudes. When the wave fre-quencies reach the local lower hybrid frequencies, chorus can be reflected due to the lower hybrid resonance. The time delay between the chorus and its echo is about 28 min. Previous observations show that the chorus can propagate at most to the magnetic latitudes of 40°. LFEW/ TC-2 found for the first time that the chorus in space could propagate to the magnetic latitude of 70°. Since most of the previous chorus observations are made close to the magnetic equatorial plane, our results are important for the studies of excitation and propagation of whistler mode wave, and relevant relativistic electron acceleration in the magnetosphere.
基金supported by National Natural Science Foundation of China (Grant Nos.40931054, 40704028 and 40523006)National Basic Research Program of China (Grant No.2006CB8062305)Specialized Research Fund for State Key Laboratories
文摘We here study the occurrence rate,probability function of velocity and duration of earthward bursty bulk flows(BBFs) in the Inner Plasma Sheet(IPS,β】0.5) using the data of Cluster in 2001 and 2002.The occurrence rate of earthward BBFs increases with distance from the Earth up to ?19 RE,which is in agreement with the previous observations of the radial evolution of BBFs.About 54% of earthward BBFs in expansion phase have a velocity larger than 600 km/s,whereas only 38% of earthward BBFs in growth and recovery phases have a velocity larger than 600 km/s.The average velocity of earthward BBFs in expansion phase is 732 km/s,larger than those in growth phase(631 km/s) and recovery phase(617 km/s).The durations of earthward BBFs decrease with the decrease of downtail distance from Earth due to the braking of earthward BBFs.The duration of earthward BBFs in expansion phase is larger than that in growth and recovery phases.The average durations in growth,expansion,and recovery phases are respectively 49.3,71.5,and 47.6 s.Therefore,the ratios of transports of energy of earthward BBFs in growth,expansion,and recovery phases can be estimated to be 0.51:1:0.47.Thus,the earthward BBFs in the expansion phase have the largest capability of the transport of energy and can produce the largest braking effects,such as inertial currents and auroral activities.