期刊文献+
共找到1,939篇文章
< 1 2 97 >
每页显示 20 50 100
Three-dimensional pseudo-dynamic reliability analysis of seismic shield tunnel faces combined with sparse polynomial chaos expansion
1
作者 GUO Feng-qi LI Shi-wei ZOU Jin-Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2087-2101,共15页
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ... To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability. 展开更多
关键词 reliability analysis shield tunnel face sparse polynomial chaos expansion modified pseudo-dynamic approach seismic stability assessment
下载PDF
Pseudo-dynamic analysis of seismic stability of reinforced slopes considering non-associated flow rule 被引量:10
2
作者 A.Eskandarinejad A.H.Shafiee 《Journal of Central South University》 SCIE EI CAS 2011年第6期2091-2099,共9页
The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the p... The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement. 展开更多
关键词 reinforced slope seismic stability pseudo-dynamic approach non-associated flow rule cohesive slope
下载PDF
Probabilistic seismic stability of three-dimensional slopes by pseudo-dynamic approach 被引量:7
3
作者 PAN Qiu-jing QU Xing-ru WANG Xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1687-1695,共9页
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl... Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach. 展开更多
关键词 seismic slope stability pseudo-dynamic analysis probabilistic analysis Monte-Carlo simulation failure probability three-dimensional slop
下载PDF
Conventional vs.modified pseudo-dynamic seismic analyses in the shallow strip footing bearing capacity problem 被引量:2
4
作者 Ghazal Rezaie Soufi Reza Jamshidi Chenari Sina Javankhoshdel 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期993-1006,共14页
The conventional pseudo-dynamic(CPD)and modified pseudo-dynamic(MPD)methods are invoked to obtain the seismic bearing capacity of strip foundations using the limit equilibrium method,with a two-wedge failure mechanism... The conventional pseudo-dynamic(CPD)and modified pseudo-dynamic(MPD)methods are invoked to obtain the seismic bearing capacity of strip foundations using the limit equilibrium method,with a two-wedge failure mechanism.A spectral version of the conventional pseudo-dynamic method(SPD)is also invoked by considering the ground motion amplification factor,to be a function of the non-dimensional frequencyλ/B and soil damping.Numeric analyses show that bearing capacity results obtained by the MPD and SPD methods are generally consistent.Both experience the same general reduction in bearing capacity with the increase ofλ/B,with successive ups and downs corresponding to soil′s natural frequencies.For 5<λ/B<10,SPD and MPD results fluctuated between falling above and below CPD results.Forλ/B<2.5,SPD and MPD results were consistent with attenuation of the shear wave,while for 10<λ/B,amplification was exhibited.Results obtained by the CPD method monotonically decrease,due to the fact that CPD fails to inherently consider site effects and damping,and instead and relies on a single factor to consider the ground motion amplification. 展开更多
关键词 bearing capacity modified pseudo-dynamic method conventional pseudo-dynamic method spectral analysis
下载PDF
Pseudo-dynamic analysis of overturning stability of retaining wall 被引量:4
5
作者 王奎华 马少俊 吴文兵 《Journal of Central South University》 SCIE EI CAS 2011年第6期2085-2090,共6页
A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and pro... A new method was presented to determine the safety factor of wall stability against overturning based on pseudo-dynamic approach. In this time-dependent method, the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the backfills was considered. Planar failure surface was considered behind the retaining wall. The results were compared with those obtained from Mononobe-Okabe theory. It is found that there is a higher value of safety factor by the present dynamic analysis. The effects of wall inclination, wall friction angle, soil friction angle and horizontal and vertical seismic coefficients on the overturning stability of retaining wall were investigated. The parametric study shows that both horizontal and vertical seismic accelerations have decreasing effect on the overturning stability of retaining wall. 展开更多
关键词 seismic active force pseudo-dynamic method EARTHQUAKE stability against overturning retaining wall
下载PDF
Seismic analysis of nailed vertical excavation using pseudo-dynamic approach 被引量:4
6
作者 Piyush Sarangi Priyanka Ghosh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第4期621-631,共11页
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such ... An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil (φ), horizontal (kh) and vertical (kv) earthquake acceleration coefficients, amplification factor (fa), length of nails (L), angle of nail inclination (a) and vertical spacing of nails (S) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety (FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature. 展开更多
关键词 EARTHQUAKE factor of safety pseudo-dynamic approach soil nailing vertical excavation
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
7
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls 被引量:3
8
作者 Li Wenfeng Wang Tao +2 位作者 Chen Xi Zhong Xiang Pan Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期587-597,共11页
A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system s... A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests. 展开更多
关键词 masonry buildings precast SRC panel seismic retrofit pseudo-dynamic test seismic performance
下载PDF
Seismic reliability analysis of shield tunnel faces under multiple failure modes by pseudo-dynamic method and response surface method 被引量:3
9
作者 ZHANG Jia-hua XU Peng +1 位作者 SUN Wang-cheng LI Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1553-1564,共12页
In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of... In order to investigate the stability problem of shield tunnel faces subjected to seismic loading,the pseudodynamic method(P-DM)was employed to analyze the seismic effect on the face.Two kinds of failure mechanisms of active collapse and passive extrusion were considered,and a seismic reliability model of shield tunnel faces under multifailure mode was established.The limit analysis method and the response surface method(RSM)were used together to solve the reliability of shield tunnel faces subjected to seismic action.Comparing with existing results,the results of this work are effective.The effects of seismic load and rock mass strength on the collapse pressure,extrusion pressure and reliability index were discussed,and reasonable ranges of support pressure of shield tunnel faces under seismic action were presented.This method can provide a new idea for solving the shield thrust parameter under the seismic loading. 展开更多
关键词 shield tunnel face pseudo-dynamic method seismic effect multi-failure mode support pressure range
下载PDF
Estimation of active earth pressure based on pseudo-dynamic approach and discretization technique 被引量:2
10
作者 LUO Wen-jun GONG Chen-jie +1 位作者 WANG Huan-yu YANG Xiao-li 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2890-2904,共15页
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce... A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil. 展开更多
关键词 pseudo-dynamic approach discretization technique upper-bound analysis INHOMOGENEITY seismic active earth pressure coefficient
下载PDF
Seismic passive earth resistance using modified pseudo-dynamic method 被引量:2
11
作者 Anindya Pain Deepankar Choudhury S. K. Bhattacharyya 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期263-274,共12页
In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is us... In earthquake prone areas, understanding of the seismic passive earth resistance is very important for the design of different geotechnical earth retaining structures. In this study, the limit equilibrium method is used for estimation of critical seismic passive earth resistance for an inclined wall supporting horizontal cohesionless backfill. A composite failure surface is considered in the present analysis. Seismic forces are computed assuming the backfill soil as a viscoelastic material overlying a rigid stratum and the rigid stratum is subjected to a harmonic shaking. The present method satisfies the boundary conditions. The amplification of acceleration depends on the properties of the backfill soil and on the characteristics of the input motion. The acceleration distribution along the depth of the backfill is found to be nonlinear in nature. The present study shows that the horizontal and vertical acceleration distribution in the backfill soil is not always in-phase for the critical value of the seismic passive earth pressure coefficient. The effect of different parameters on the seismic passive earth pressure is studied in detail. A comparison of the present method with other theories is also presented, which shows the merits of the present study. 展开更多
关键词 retaining wall EARTHQUAKE limit equilibrium method modified pseudo-dynamic method passive earthpressure composite failure mechanism
下载PDF
Networked collaborative pseudo-dynamic testing of a multi-span bridge based on NetSLab 被引量:1
12
作者 Cai Xinjiang Tian Shizhu +1 位作者 Wang Dapeng Xiao Yan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期387-397,共11页
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT... Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures. 展开更多
关键词 dynamic tests NETWORKED pseudo-dynamic testing multi-span bridges RC short piers FRP NetSLab
下载PDF
Pseudo-dynamic active earth pressure behind retaining wall for cohesive soil backfill
13
作者 马少俊 王奎华 吴文兵 《Journal of Central South University》 SCIE EI CAS 2012年第11期3298-3304,共7页
A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of ... A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory. 展开更多
关键词 seismic active earth pressure pseudo-dynamic method tension cracked zone retaining wall
下载PDF
DSAS:A new macromolecular substructure solution program based on the modified phase-retrieval algorithm
14
作者 付兴科 谭振希 +2 位作者 耿直 刘茜 丁玮 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期125-132,共8页
Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructu... Considering the pivotal role of single-wavelength anomalous diffraction(SAD) in macromolecular crystallography,our objective was to introduce DSAS,a novel program designed for efficient anomalous scattering substructure determination.DSAS stands out with its core components:a modified phase-retrieval algorithm and automated parameter tuning.The software boasts an intuitive graphical user interface(GUI),facilitating seamless input of essential data and real-time monitoring.Extensive testing on DSAS has involved diverse datasets,encompassing proteins,nucleic acids,and various anomalous scatters such as sulfur(S),selenium(Se),metals,and halogens.The results confirm DSAS’s exceptional performance in accurately determining heavy atom positions,making it a highly effective tool in the field. 展开更多
关键词 DSAS single-wavelength anomalous diffraction automated parameters settings phase-retrieval algorithm substructure determination
下载PDF
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
15
作者 Zheng Lichang Xu Guoshan +3 位作者 Yang Ge Wang Zhen Yang Kaibo Zheng Zhenyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期625-636,共12页
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop... For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper. 展开更多
关键词 real-time dynamic substructure testing central difference method STABILITY mass participation coefficient tuned liquid damper
下载PDF
A symmetric substructuring method for analyzing the natural frequencies of conical origami structures
16
作者 Chenhao Lu Yao Chen +2 位作者 Weiying Fan Jian Feng Pooya Sareh 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期203-210,共8页
Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight s... Conical origami structures are characterized by their substantial out-of-plane stiffness and energy-absorptioncapacity.Previous investigations have commonly focused on the static characteristics of these lightweight struc-tures.However,the efficient analysis of the natural vibrations of these structures is pivotal for designing conicalorigami structures with programmable stiffness and mass.In this paper,we propose a novel method to analyzethe natural vibrations of such structures by combining a symmetric substructuring method(SSM)and a gener-alized eigenvalue analysis.SSM exploits the inherent symmetry of the structure to decompose it into a finiteset of repetitive substructures.In doing so,we reduce the dimensions of matrices and improve computationalefficiency by adopting the stiffness and mass matrices of the substructures in the generalized eigenvalue analysis.Finite element simulations of pin-jointed models are used to validate the computational results of the proposedapproach.Moreover,the parametric analysis of the structures demonstrates the influences of the number of seg-ments along the circumference and the radius of the cone on the structural mass and natural frequencies of thestructures.Furthermore,we present a comparison between six-fold and four-fold conical origami structures anddiscuss the influence of various geometric parameters on their natural frequencies.This study provides a strategyfor efficiently analyzing the natural vibration of symmetric origami structures and has the potential to contributeto the efficient design and customization of origami metastructures with programmable stiffness. 展开更多
关键词 Natural structural vibration Origami design Group theory Symmetric substructuring method(SSM) Generalized eigenvalue analysis
下载PDF
Generalized polynomial chaos expansion by reanalysis using static condensation based on substructuring
17
作者 D.LEE S.CHANG J.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期819-836,共18页
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen... This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs. 展开更多
关键词 forward uncertainty quantification(UQ) generalized polynomial chaos expansion(GPCE) static reanalysis method static condensation substructurING
下载PDF
Research on Rice Panicle L-system Model Based on Substructure Algorithm 被引量:1
18
作者 周云辉 吴斌 +2 位作者 刘宏伟 曾超 邵延华 《Agricultural Science & Technology》 CAS 2010年第6期83-86,共4页
In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the an... In order to decrease model complexity of rice panicle for its complicated morphological structure,an interactive L-system based on substructure algorithm was proposed to model rice panicle in this study.Through the analysis of panicle morphology,the geometrical structure models of panicle spikelet,axis and branch were constructed firstly.Based on that,an interactive panicle L-system model was developed by using substructure algorithm to optimize panicle geometrical models with the similar structure.Simulation results showed that the interactive L-system panicle model based on substructure algorithm could fast construct panicle morphological structure in reality.In addition,this method had the well reference value for other plants model research. 展开更多
关键词 Rice panicle substructure algorithm L-SYSTEM MODEL
下载PDF
DESIGN OF WAVE-SHAPED SPACE TRUSS CONSIDERING THE EFFECT OF SUBSTRUCTURE
19
作者 尹越 纪刚 +2 位作者 韩庆华 程万海 刘锡良 《Transactions of Tianjin University》 EI CAS 2001年第1期44-47,共4页
The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,consid... The wave-shaped space truss is used as the roof of the natatorium in Tianjin University,which ingeniously displays the function of the building.In this paper,the wave-shaped space truss is analyzed and designed,considering the substructure made of reinforced concrete rigid frame and the space truss working together.Also,the anti-seismic characteristic of the wave-shaped space truss is studied based on the integral model. 展开更多
关键词 wave-shaped space truss effect of substructure anti-seismic design
全文增补中
Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries 被引量:16
20
作者 Liu Jingbo Tan Hui +2 位作者 Bao Xin Wang Dongyang Li Shutao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期747-758,共12页
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident... The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves. 展开更多
关键词 soil-structure dynamic interaction SEISMIC WAVE INPUT WAVE method EQUIVALENT INPUT SEISMIC loads substructurE of artifi cial boundaries
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部