The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. ...The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.展开更多
As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence...As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence time distributions of the lab scale subsurface flow constructed wetland.Considering the presence of trailing and multiple peaks of the tracer breakthrough curve,the multi flow dispersion model(MFDM)was used to fit the experimental tracer breakthrough curves.According to the residual sum of squares and comparison between the experimental values and simulated values of the tracer concentration,MFDM could fit the residence time distribution(RTD)curve satisfactorily,the results of which also reflected the layered structure of wetland cells,thus to give reference for application of MFDM to the same kind of subsurface flow constructed wetlands.展开更多
Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The ...Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The results show that the removal of CODCr agrees with the kinetic equation of a first order reaction. The removal of pollutants varies with different seasons. The removal rates of CODCr, NH3-N, TN in the spring are 15%–23% higher than those in the autumn. The amount of ammonifier is larger than that of denitrifying bacteria and the amount of denitrifying bacte- ria is larger than that of nitrosomonas. The amount of bacteria around the plant roots is larger than that on the surface of the packing medium. No apparent change is observed for the amount of denitrifying bacteria and nitrosomonas between spring and autumn.展开更多
The paper reports the findings of a research work carried out to examine the performance and efficiency of a subsurface constructed wetland (SSFCW) for the treatment of domestic sewage in the University of Lagos (Unil...The paper reports the findings of a research work carried out to examine the performance and efficiency of a subsurface constructed wetland (SSFCW) for the treatment of domestic sewage in the University of Lagos (Unilag), Nigeria. The removal patterns and efficiencies of the physical, chemical and biological sewage pollutants parameters of domestic waste water generated within Unilag community by the SSFCW were studied. The wastewater was sampled and analysed along the SSFCW from influent (point1) to effluent (point 11). Total Dissolved Solids (TDS) reduced from 471 mg/l to 11.85 mg/l (97.48%), Turbidity reduced from 108.75 HTU to 0.05HTU (99.95%), Manganese reduced from 6.05 mg/l to 0.61 mg/ (89.92%), Nitrate reduced from 27.5 mg/l to 2.0 mg/l (92.73%), Sulphate reduced from 48.5 mg/l to 28 mg/l (42.27%), Iron reduced from 1.13 mg/l to 0.03 mg/l (97.35%), BOD reduced from 73.14 mg/l to 12.8 mg/l (82.5%), and E-coli reduced from 874 MPN/100 ml to 0.15 MPN/100 ml (99.98%). On the other hand, Dissolved Oxygen content increased along the SSFCW from 3.14 mg/l to 7.49 mg/l (138.54%) while the pH improved from slightly acid level of 6.49 to slightly above neutral level of 7.05 (9.3%). All the parameters at effluent point are within the Nigerian Federal Environmental Protection Agency (FEPA) acceptable standard. The study concludes that the SSFCW is a cheap, efficient and appropriate technology for the treatment of domestic sewage under tropical conditions.展开更多
In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed...In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).展开更多
Factors affecting total nitrogen(TN) removal rates in constructed wetland were investigated by intermittent operation in the subsurface flow(SSF) constructed wetland system.The results demonstrated that removal rates ...Factors affecting total nitrogen(TN) removal rates in constructed wetland were investigated by intermittent operation in the subsurface flow(SSF) constructed wetland system.The results demonstrated that removal rates of TN increased with the rising of TN pollution load(1.40-12.40 g/m2) when the retention time was determined by 60% TN removal efficiency(n=180,p<0.05) in SSF wetlands.The maximum TN removal rate was 1.71 g/(m2·d) in SSF Phragmites australis-soil-slag system.TN removal rates were affected by total phosphorus load in case of higher TN load.TN removal rates in SSF Phragmites australis wetlands were greater than that in SSF Calamagrostis angustifolia wetlands at the same experimental cycle.Effect of wetland substrates on TN removal rates varied with the pollutants loading in SSF constructed wetland system,plant species and plant-growing period.展开更多
The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) ...The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality fTom the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.展开更多
In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to descr...In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal efficiencies of Pb in the coke system and the gravel system were within 95-99%, so the first order dynamic model failed to fit the experimental data because the hydraulic resident times of Pb did not affect outlet concentration of Pb. From the removal rate constants, it is found that the coke and gravel system have different absorption efficiencies of heavy metal pollutants. Therefore, it is suggested that the removal efficiencies of heavy metals are influenced by the choice of substrates to some extent.展开更多
Nitrogen removal of wetlands under 40 differ-ent inflow loadings were studied in the field during 15months. The removal efficiency of four different sets ofbeds, namely the reed bed, the Zizania caduciflor bed, themix...Nitrogen removal of wetlands under 40 differ-ent inflow loadings were studied in the field during 15months. The removal efficiency of four different sets ofbeds, namely the reed bed, the Zizania caduciflor bed, themixing planting bed, and the control bed were studied.The outflow loading and total nitrogen (TN) removal rateof these beds under different inflow loadings and pollutionloadings were investigated. The inflow loadings of 4 sub-surface flow systems (SFS) ranged from 400 to 8000 mg·(m^(2) ·d) 21 , while outflow loadings were less than 7000 mg·(m^(2) ·d) 21 . The results showed that the inflow and outflowloading of TN removal rate in SFS presented an obviouslinear relationship. The optical inflow loading to run thesystem was between 2000 to 4000 mg·(m^(2) ·d) 21 . Averageremoval rate was between 1062 and 2007 mg·(m^(2) ·d) 21 .SFS with plant had a better removal rate than the control.TN removal rates of the reed and Zizania caduciflora bedwere 63% and 27% higher than the control bed,respectively. The results regarding the TN absorption ofplants indicated that the absorption amount was verylimited, less than 5% of the total removal. It proved thatplants clearly increase TN removal rates by improving thewater flow, andincreasingthe biomass, as wellas activitiesof microorganisms around the roots. The researchprovided a perspective for understanding the TN removalmechanism and design for SFS.展开更多
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water befo...A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface- and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m3/(m2.day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ~ 4.5%, 93.4% + 2.1%, 54.0% + 6.3%, 53.9% ~ 6.0% and 69.4% :t: 4.6%, respectively, which brought about an effective improvement of the fiver water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs.展开更多
文摘The operational performance of a full scale subsurface flow constructed wetland, which treated the mixed industrial and domestic wastewater with BOD 5/COD mean ratio of 0 33 at Shatian, Shenzhen City was studied. The constructed wetland system consists of screens, sump, pumping station, and primary settling basin, facultative pond, first stage wetland and secondary stage wetland. The designed treatment capacity is 5000 m 3/d, and the actual influent flow is in the range of <2000 to >10000 m 3/d. Under normal operational conditions, the final effluent quality well met the National Integrated Wastewater Discharge Standard(GB 8978\_1996), with the following parameters(mean values): COD 33 90 mg/L, BOD 5 7.65 mg/L, TSS 7.92 mg/L, TN 9.11 mg/L and TP 0 56 mg/L. Seven species of plants were selected to grow in the wetland: Reed, Sweetcane flower Silvergrass, Great Bulrush, Powdery Thalia and Canna of three colours. The growing season is a whole year round. The seasonal discrepancy could be observed and the plants growing in the wetland are vulnerable to lower temperature in winter. The recycling of the effluent in the first stage of the wetland system is an effective measure to improve the performance of the wetland system. The insufficient DO value in the wetland system not only had significant effect on pollutants removal in the wetland, but also was unfavourable to plant growth. The recycling of effluent to the inlet of wetland system and artificial pond to increase DO value of influent to the wetland is key to operate the subsurface constructed wetland steadily and effectively.
基金Under the auspices of the Creative Group Foundation of the National Natural Science Foundation of China(50721006)the National Basic Research Program of China(2006CB403402-3)+1 种基金the National Water Resource and Environment Special Item(2008ZX07207-006-04)the Natural Science Foundation of Shanghai(10ZR1400300)
文摘As an important design factor for constructed wetlands,hydraulic retention time and its distribution will affect the treatment performance.Instantaneously injected sodium chloride tracers were used to obtain residence time distributions of the lab scale subsurface flow constructed wetland.Considering the presence of trailing and multiple peaks of the tracer breakthrough curve,the multi flow dispersion model(MFDM)was used to fit the experimental tracer breakthrough curves.According to the residual sum of squares and comparison between the experimental values and simulated values of the tracer concentration,MFDM could fit the residence time distribution(RTD)curve satisfactorily,the results of which also reflected the layered structure of wetland cells,thus to give reference for application of MFDM to the same kind of subsurface flow constructed wetlands.
文摘Experiments in monitoring the removal of organic material and nitrogen and determining the amounts of mi- croorganism at different sites in the subsurface flow constructed wetland in Sihong county were performed. The results show that the removal of CODCr agrees with the kinetic equation of a first order reaction. The removal of pollutants varies with different seasons. The removal rates of CODCr, NH3-N, TN in the spring are 15%–23% higher than those in the autumn. The amount of ammonifier is larger than that of denitrifying bacteria and the amount of denitrifying bacte- ria is larger than that of nitrosomonas. The amount of bacteria around the plant roots is larger than that on the surface of the packing medium. No apparent change is observed for the amount of denitrifying bacteria and nitrosomonas between spring and autumn.
文摘The paper reports the findings of a research work carried out to examine the performance and efficiency of a subsurface constructed wetland (SSFCW) for the treatment of domestic sewage in the University of Lagos (Unilag), Nigeria. The removal patterns and efficiencies of the physical, chemical and biological sewage pollutants parameters of domestic waste water generated within Unilag community by the SSFCW were studied. The wastewater was sampled and analysed along the SSFCW from influent (point1) to effluent (point 11). Total Dissolved Solids (TDS) reduced from 471 mg/l to 11.85 mg/l (97.48%), Turbidity reduced from 108.75 HTU to 0.05HTU (99.95%), Manganese reduced from 6.05 mg/l to 0.61 mg/ (89.92%), Nitrate reduced from 27.5 mg/l to 2.0 mg/l (92.73%), Sulphate reduced from 48.5 mg/l to 28 mg/l (42.27%), Iron reduced from 1.13 mg/l to 0.03 mg/l (97.35%), BOD reduced from 73.14 mg/l to 12.8 mg/l (82.5%), and E-coli reduced from 874 MPN/100 ml to 0.15 MPN/100 ml (99.98%). On the other hand, Dissolved Oxygen content increased along the SSFCW from 3.14 mg/l to 7.49 mg/l (138.54%) while the pH improved from slightly acid level of 6.49 to slightly above neutral level of 7.05 (9.3%). All the parameters at effluent point are within the Nigerian Federal Environmental Protection Agency (FEPA) acceptable standard. The study concludes that the SSFCW is a cheap, efficient and appropriate technology for the treatment of domestic sewage under tropical conditions.
文摘In this study, the project of constructed wetland for treatment of tailwater from the wastewater treatment plant in Wudang Mountain was taken as an example, and the technological processes, pollution load, wetland bed structure, bed filler, selection of plants and hydraulic conditions of the subsurface flow constructed wetland were discussed. A subsurface flow constructed wetland, which covered an area of 7 227 m^2 was finally designed. It could treat 7 000 m^3 of tailwater from the wastewater treatment plant a day. In addition, the system could reduce the emission of COD, BODs, TN, TP and NH3-N by 25.55, 25.55, 12.78, 1.28 and 17.89 t respectively a day. The outlet water was proved to reach the Standard A of the first class in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002).
基金Under the auspices of the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q06-03)the National Natural Science Foundation of China (40901128)
文摘Factors affecting total nitrogen(TN) removal rates in constructed wetland were investigated by intermittent operation in the subsurface flow(SSF) constructed wetland system.The results demonstrated that removal rates of TN increased with the rising of TN pollution load(1.40-12.40 g/m2) when the retention time was determined by 60% TN removal efficiency(n=180,p<0.05) in SSF wetlands.The maximum TN removal rate was 1.71 g/(m2·d) in SSF Phragmites australis-soil-slag system.TN removal rates were affected by total phosphorus load in case of higher TN load.TN removal rates in SSF Phragmites australis wetlands were greater than that in SSF Calamagrostis angustifolia wetlands at the same experimental cycle.Effect of wetland substrates on TN removal rates varied with the pollutants loading in SSF constructed wetland system,plant species and plant-growing period.
文摘The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality fTom the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.
文摘In this study constructed wetlands (CWs) were used to remove three heavy metals (Zn, Cu and Pb). The two tested substrates were made of coke and gravel, respectively. First order dynamic model was appropriate to describe removing of Zn and Cu. The experimental results showed that first dynamic removal rate constants of Zn in CWs with coke and gravel were 0.2326 h-1 and 0.1222 h-1, respectively. And those of Cu in CWs with coke and gravel were 0.2017 h-1 and 0.3739 h-1. However, removal efficiencies of Pb in the coke system and the gravel system were within 95-99%, so the first order dynamic model failed to fit the experimental data because the hydraulic resident times of Pb did not affect outlet concentration of Pb. From the removal rate constants, it is found that the coke and gravel system have different absorption efficiencies of heavy metal pollutants. Therefore, it is suggested that the removal efficiencies of heavy metals are influenced by the choice of substrates to some extent.
基金This work was supported by the Key Technologies Research and Development Program of the Tenth Five-Year Plan of China(Grant No.2003AA601090).
文摘Nitrogen removal of wetlands under 40 differ-ent inflow loadings were studied in the field during 15months. The removal efficiency of four different sets ofbeds, namely the reed bed, the Zizania caduciflor bed, themixing planting bed, and the control bed were studied.The outflow loading and total nitrogen (TN) removal rateof these beds under different inflow loadings and pollutionloadings were investigated. The inflow loadings of 4 sub-surface flow systems (SFS) ranged from 400 to 8000 mg·(m^(2) ·d) 21 , while outflow loadings were less than 7000 mg·(m^(2) ·d) 21 . The results showed that the inflow and outflowloading of TN removal rate in SFS presented an obviouslinear relationship. The optical inflow loading to run thesystem was between 2000 to 4000 mg·(m^(2) ·d) 21 . Averageremoval rate was between 1062 and 2007 mg·(m^(2) ·d) 21 .SFS with plant had a better removal rate than the control.TN removal rates of the reed and Zizania caduciflora bedwere 63% and 27% higher than the control bed,respectively. The results regarding the TN absorption ofplants indicated that the absorption amount was verylimited, less than 5% of the total removal. It proved thatplants clearly increase TN removal rates by improving thewater flow, andincreasingthe biomass, as wellas activitiesof microorganisms around the roots. The researchprovided a perspective for understanding the TN removalmechanism and design for SFS.
基金supported by the National Natural Science Foundation of China(No.50838005,51021140002)the Program for Innovative Research Team in Shaanxi(No.2013KCT-13)
文摘A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger fiver in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface- and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m3/(m2.day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ~ 4.5%, 93.4% + 2.1%, 54.0% + 6.3%, 53.9% ~ 6.0% and 69.4% :t: 4.6%, respectively, which brought about an effective improvement of the fiver water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs.