For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background mod...For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.展开更多
A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtractio...A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.展开更多
To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction alg...To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.展开更多
Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for ima...Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.展开更多
The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,...The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,the transformation between the excited energy spectra of the12 C +12C system and the ground state energy spectra of the12 C + p system is introduced. The method of subtraction of the hydrogen background in the natural carbon target used in the experiment is elaborately described and the results are discussed. It is indicated that this method of subtraction of hydrogen background is reasonable and can be used in the data analysis. Based on the elastic scattering cross section of the previous experiment of12C+p at 95.3A MeV, the hydrogen content entered into the reaction is analyzed. The final hydrogen content in the natural carbon target is(2.73 ± 0.12)%.展开更多
A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track t...A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.展开更多
A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for ...A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.展开更多
Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from ...Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.展开更多
针对鲁棒主成分分析模型(Robust Principal Component Analysis,RPCA)一般将前景看作背景中存在的异常像素点,从而使得在复杂背景中前景检测精度下降的问题,提出一种基于加权核范数与3D全变分(3D-TV)的背景减除模型。该模型以RPCA为基础...针对鲁棒主成分分析模型(Robust Principal Component Analysis,RPCA)一般将前景看作背景中存在的异常像素点,从而使得在复杂背景中前景检测精度下降的问题,提出一种基于加权核范数与3D全变分(3D-TV)的背景减除模型。该模型以RPCA为基础,利用加权核范数来约束背景的低秩性,考虑了不同奇异值对秩函数的影响,使其更接近实际背景的秩;然后利用3D-TV来约束前景的稀疏性,考虑了目标在时空上的连续性,有效抑制了复杂背景对前景提取造成的干扰。实验结果表明,与其他4种算法对比,所提模型的F值基本上是最优的,且能准确地分离图像中的背景和前景。展开更多
On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detect...On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.展开更多
基金Project(60772080) supported by the National Natural Science Foundation of ChinaProject(3240120) supported by Tianjin Subway Safety System, Honeywell Limited, China
文摘For intelligent transportation surveillance, a novel background model based on Mart wavelet kernel and a background subtraction technique based on binary discrete wavelet transforms were introduced. The background model kept a sample of intensity values for each pixel in the image and used this sample to estimate the probability density function of the pixel intensity. The density function was estimated using a new Marr wavelet kernel density estimation technique. Since this approach was quite general, the model could approximate any distribution for the pixel intensity without any assumptions about the underlying distribution shape. The background and current frame were transformed in the binary discrete wavelet domain, and background subtraction was performed in each sub-band. After obtaining the foreground, shadow was eliminated by an edge detection method. Experimental results show that the proposed method produces good results with much lower computational complexity and effectively extracts the moving objects with accuracy ratio higher than 90%, indicating that the proposed method is an effective algorithm for intelligent transportation system.
基金National Natural Science Foundation Grant No.60072029
文摘A new real-time algorithm is proposed in this paperfor detecting moving object in color image sequencestaken from stationary cameras.This algorithm combines a temporal difference with an adaptive background subtraction where the combination is novel.Ⅷ1en changes OCCUr.the background is automatically adapted to suit the new conditions.Forthe background model,a new model is proposed with each frame decomposed into regions and the model is based not only upon single pixel but also on the characteristic of a region.The hybrid presentationincludes a model for single pixel information and a model for the pixel’s neighboring area information.This new model of background can both improve the accuracy of segmentation due to that spatialinformation is taken into account and salientl5r speed up the processing procedure because porlion of neighboring pixel call be selected into modeling.The algorithm was successfully used in a video surveillance systern and the experiment result showsit call obtain a clearer foreground than the singleframe difference or background subtraction method.
文摘To extract and tr ack moving objects is usually one of the most important tasks of intelligent video surveillance systems. This paper presents a fast and adaptive background subtraction algorithm and the motion tracking process using this algorithm. The algorithm uses only luminance components of sampled image sequence pixels and models every pixel in a statistical model. The algorithm is characterized by its ability of real time detecting sudden lighting changes, and extracting and tracking motion objects faster. It is shown that our algorithm can be realized with lower time and space complexity and adjustable object detection error rate with comparison to other background subtraction algorithms. Making use of the algorithm, an indoor monitoring system is also worked out and the motion tracking process is presented in this paper. Experimental results testify the algorithm's good performances when used in an indoor monitoring system.
基金supported in part by the EU FP7 QUICK project under Grant Agreement No.PIRSES-GA-2013-612652*National Nature Science Foundation of China(No.61671336,61502348,61231015,61671332,U1736206)+3 种基金Hubei Province Technological Innovation Major Project(No.2016AAA015,No.2017AAA123)the Fundamental Research Funds for the Central Universities(413000048)National High Technology Research and Development Program of China(863 Program)No.2015AA016306Applied Basic Research Program of Wuhan City(2016010101010025)
文摘Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.
基金Supported by the Innovation Foundation of BUAA for PhD Graduates and National Natural Science Foundation of China(Nos.11035007,11235002 and 11175011)
文摘The experimental data of 100 A MeV12C +12C elastic scattering are checked by using two-body kinematic calculation and12 C + p elastic scattering. It is shown that the measured data are true and reliable. In the paper,the transformation between the excited energy spectra of the12 C +12C system and the ground state energy spectra of the12 C + p system is introduced. The method of subtraction of the hydrogen background in the natural carbon target used in the experiment is elaborately described and the results are discussed. It is indicated that this method of subtraction of hydrogen background is reasonable and can be used in the data analysis. Based on the elastic scattering cross section of the previous experiment of12C+p at 95.3A MeV, the hydrogen content entered into the reaction is analyzed. The final hydrogen content in the natural carbon target is(2.73 ± 0.12)%.
文摘A real-time tracking system for the fast moving object on the complex background is proposed.The Markov random filed(MRF)model based background subtraction algorithm is used to detect the changing pixels and track the moving object.The prior probability of the segmentation mask is modeled by using MRF,and the object tracking task is translated into the maximum a-posterior(MAP)problem.Experimental results show that the method is efficient at both offline and online moving objects on simple and complex background.
基金Project supported by National Basic Research Program of Chinaon Urban Traffic Monitoring and Management System(Grant No .TG1998030408)
文摘A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.
文摘Segmentation of moving objects efficiently from video sequence is very important for many applications. Background subtraction is a common method typically used to segment moving objects in image sequences taken from a statistic camera. Some existing algorithms cannot adapt to changing circumstances and require manual calibration in terms of specification of parameters or some hypotheses for changing background. An adaptive motion segmentation method is developed according to motion variation and chromatic characteristics, which prevents undesired corruption of the background model and does not consider the adaptation coefficient. RGB color space is selected instead of introducing complex color models to segment moving objects and suppress shadows. A color ratio for 4-connected neighbors of a pixel and multi-scale wavelet transformation are combined to suppress shadows. The mentioned approach is scene-independent and high correct segmentation. It has been shown that the approach is robust and efficient to detect moving objects by experiments.
文摘针对鲁棒主成分分析模型(Robust Principal Component Analysis,RPCA)一般将前景看作背景中存在的异常像素点,从而使得在复杂背景中前景检测精度下降的问题,提出一种基于加权核范数与3D全变分(3D-TV)的背景减除模型。该模型以RPCA为基础,利用加权核范数来约束背景的低秩性,考虑了不同奇异值对秩函数的影响,使其更接近实际背景的秩;然后利用3D-TV来约束前景的稀疏性,考虑了目标在时空上的连续性,有效抑制了复杂背景对前景提取造成的干扰。实验结果表明,与其他4种算法对比,所提模型的F值基本上是最优的,且能准确地分离图像中的背景和前景。
文摘On grounds of the advent of real-time applications,like autonomous driving,visual surveillance,and sports analysis,there is an augmenting focus of attention towards Multiple-Object Tracking(MOT).The tracking-by-detection paradigm,a commonly utilized approach,connects the existing recognition hypotheses to the formerly assessed object trajectories by comparing the simila-rities of the appearance or the motion between them.For an efficient detection and tracking of the numerous objects in a complex environment,a Pearson Simi-larity-centred Kuhn-Munkres(PS-KM)algorithm was proposed in the present study.In this light,the input videos were,initially,gathered from the MOT dataset and converted into frames.The background subtraction occurred whichfiltered the inappropriate data concerning the frames after the frame conversion stage.Then,the extraction of features from the frames was executed.Afterwards,the higher dimensional features were transformed into lower-dimensional features,and feature reduction process was performed with the aid of Information Gain-centred Singular Value Decomposition(IG-SVD).Next,using the Modified Recurrent Neural Network(MRNN)method,classification was executed which identified the categories of the objects additionally.The PS-KM algorithm identi-fied that the recognized objects were tracked.Finally,the experimental outcomes exhibited that numerous targets were precisely tracked by the proposed system with 97%accuracy with a low false positive rate(FPR)of 2.3%.It was also proved that the present techniques viz.RNN,CNN,and KNN,were effective with regard to the existing models.