A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst...A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.展开更多
The atomic force microscope(AFM)can measure nanoscale morphology and mechanical properties and has a wide range of applications.The traditional method for measuring the mechanical properties of a sample does so for th...The atomic force microscope(AFM)can measure nanoscale morphology and mechanical properties and has a wide range of applications.The traditional method for measuring the mechanical properties of a sample does so for the longitudinal and transverse properties separately,ignoring the coupling between them.In this paper,a data processing and multidimensional mechanical information extraction algorithm for the composite mode of peak force tapping and torsional resonance is proposed.On the basis of a tip–sample interaction model for the AFM,longitudinal peak force data are used to decouple amplitude and phase data of transverse torsional resonance,accurately identify the tip–sample longitudinal contact force in each peak force cycle,and synchronously obtain the corresponding characteristic images of the transverse amplitude and phase.Experimental results show that the measured longitudinal mechanical characteristics are consistent with the transverse amplitude and phase characteristics,which verifies the effectiveness of the method.Thus,a new method is provided for the measurement of multidimensional mechanical characteristics using the AFM.展开更多
In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and...In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and weeds is a challenging issue for the images with a high presence of weeds.This work proposes a segmentation method based on the combination of semantic segmentation and K-means algorithms for the segmenta-tion of crops and weeds in color images.Agronomic images of two different databases were used for the segmentation algorithms.Using the thresholding technique,everything except plants was removed from the images.Afterward,semantic segmentation was applied using U-net followed by the segmentation of crops and weeds using the K-means subtractive algorithm.The comparison of segmentation performance was made for the proposed method and K-Means clustering and superpixels algorithms.The proposed algorithm pro-vided more accurate segmentation in comparison to other methods with the maximum accuracy of equivalent to 99.19%.Based on the confusion matrix,the true-positive and true-negative values were 0.9952 and 0.8985 representing the true classification rate of crops and weeds,respectively.The results indicated that the proposed method successfully provided accurate and convincing results for the segmentation of crops and weeds in the images with a complex presence of weeds.展开更多
基金Project(61473298)supported by the National Natural Science Foundation of ChinaProject(2015QNA65)supported by Fundamental Research Funds for the Central Universities,China
文摘A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values.
基金This project is supported by the General Program of the National Natural Science Foundation of China(62073227)the National Natural Science Foundation of China(61927805 and 61903359).
文摘The atomic force microscope(AFM)can measure nanoscale morphology and mechanical properties and has a wide range of applications.The traditional method for measuring the mechanical properties of a sample does so for the longitudinal and transverse properties separately,ignoring the coupling between them.In this paper,a data processing and multidimensional mechanical information extraction algorithm for the composite mode of peak force tapping and torsional resonance is proposed.On the basis of a tip–sample interaction model for the AFM,longitudinal peak force data are used to decouple amplitude and phase data of transverse torsional resonance,accurately identify the tip–sample longitudinal contact force in each peak force cycle,and synchronously obtain the corresponding characteristic images of the transverse amplitude and phase.Experimental results show that the measured longitudinal mechanical characteristics are consistent with the transverse amplitude and phase characteristics,which verifies the effectiveness of the method.Thus,a new method is provided for the measurement of multidimensional mechanical characteristics using the AFM.
文摘In precision agriculture,the accurate segmentation of crops and weeds in agronomic images has always been the center of attention.Many methods have been proposed but still the clean and sharp segmentation of crops and weeds is a challenging issue for the images with a high presence of weeds.This work proposes a segmentation method based on the combination of semantic segmentation and K-means algorithms for the segmenta-tion of crops and weeds in color images.Agronomic images of two different databases were used for the segmentation algorithms.Using the thresholding technique,everything except plants was removed from the images.Afterward,semantic segmentation was applied using U-net followed by the segmentation of crops and weeds using the K-means subtractive algorithm.The comparison of segmentation performance was made for the proposed method and K-Means clustering and superpixels algorithms.The proposed algorithm pro-vided more accurate segmentation in comparison to other methods with the maximum accuracy of equivalent to 99.19%.Based on the confusion matrix,the true-positive and true-negative values were 0.9952 and 0.8985 representing the true classification rate of crops and weeds,respectively.The results indicated that the proposed method successfully provided accurate and convincing results for the segmentation of crops and weeds in the images with a complex presence of weeds.