Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficien...Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficient detail.To develop species-specific and generalized allometric equations,154 saplings of eight Fagaceae tree species in subtropical China’s evergreen broadleaved forests were collected.Three dendrometric variables,root collar diameter(d),height(h),and crown area(ca)were applied in the model by the weighted nonlinear seemingly unrelated regression method.Using only d as an input variable,the species-specific and generalized allometric equations estimated the aboveground biomass reasonably,with R _(adj)^(2) values generally>0.85.Adding h and/or ca improved the fitting of some biomass components to a certain extent.Generalized equations showed a relatively large coefficient of variation but comparable bias to species-specific equations.Only in the absence of species-specific equations at a given location are generalized equations for mixed species recommended.The developed regression equations can be used to accurately calculate the aboveground biomass of understory Fagaceae regeneration trees in China’s subtropical evergreen broadleaved forests.展开更多
Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest chang...Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.展开更多
Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have no...Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.展开更多
Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and...Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.展开更多
[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops...[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops, multiple cropping and intercropping, new multiple planting patterns of potato with efficiency are constructed, for the purpose of increasing yield and benefit of potato. [Result] In irrigated plain and hill area, three new planting patterns such as autumn potato/rope-rice,winter potato-rice-autumn potato, and autumn(winter) potato-rice were constructed.In dry land of plain and hill area, three new planting patterns such as spring(winter)potato/maize/sweet potato, spring(winter) potato/maize-autumn potato, and wheat + winter potato/maize/sweet potato were constructed. In plateau mountainous area, spring potato/maize was constructed. [Conclusion] With use of new planting patterns, the cropping index of new patterns was 200%-300%, while the accumulated temperature utilization was 68.9%-93.4%, light energy utilization was 0.98%-1.59% and straw utilization was 50%-100%. To compared with traditional planting patterns, the yield increased by 2.6%-93%, and benefit increased by 15.8%-284.3%. Furthermore,multiple planting patterns of potato have become main planting patterns in increasing yield and income in Sichuan.展开更多
The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR ...The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.展开更多
The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quanti...The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.展开更多
Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted du...Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.展开更多
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We sought to quantify...To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We sought to quantify the carbon sequestration potential. We sampled four forest types, shrub (SR), pine (Pinus massoniana) forest (PF), pin~ and broadleaf mixed forest (Mr) and evergreen broadleaf forest (BF). A regression equation was constructed using tree height and diameter at breast height (DBH) and elements of total tree biomass. The equation was subse- quently utilized to estimate tree carbon storage. The carbon storage of understory, litter, and soil was also estimated.展开更多
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ...Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.展开更多
We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, startin...We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m^2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m^2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3^- in the soil.展开更多
Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity...Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical, and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil…展开更多
There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiol...There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil PH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped.展开更多
An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall proce...An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet.展开更多
To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil or...To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil organic C content. Changes in N mineralization, nitrification and denitrification, as well as their response to glucose addition were measured by incubation experiments in paddy soils derived from Quaternary red clay in subtropical China. Mineralization and denitrification were changed in order of increasing soil fertilities: high 〉 middle 〉 low. During the first week of incubation, net N mineralization and denitrification rates in paddy soil with high fertility were 1.9 and 1.1 times of those in soil with middle fertility and 5.3 and 2.9 times of those in soil with low fertility, respectively. Addition of glucose decreased net N mineralization by approximately 78.8, 109.2 and 177.4% in soils with high, middle and low fertility, respectively. However, denitrification rates in soils with middle and low fertility were increased by 14.4 and 166.2% respectively. The highest nitrate content among the paddy soils tested was 0.62 mg kg-1 and the highest nitrification ratio was 0.33%. Addition of glucose had no obvious effects on nitrate content and nitrification ratio. It was suggested that the intensity of mineralization and denitrification was quite different in soils with different fertility, and increased with increasing soil organic C content. Addition of glucose decreased mineralization, but increased denitrification, and the shifts were greater in soil with low than in soil with high organic C content. Neither addition of glucose nor inherent soil organic C had obvious effects on nitrification in paddy soils tested.展开更多
Fine roots(<2 mm)play vital roles in water and nutrient uptake.However,intraspecific variations in their chemical traits and their controlling mechanisms remain poorly understood at a regional scale.This study exam...Fine roots(<2 mm)play vital roles in water and nutrient uptake.However,intraspecific variations in their chemical traits and their controlling mechanisms remain poorly understood at a regional scale.This study examined these intraspecific variations in fine roots in Masson pine(Pinus massoniana Lamb.)plantations across subtropical China and their responses to environmental factors.Root nitrogen(N)and phosphorus(P)concentrations and their mass ratios(N:P)ranged from 3.5 to 11.7 g kg^(-1),0.2 to0.9 g kg^(-1),and 7.8 to 51.6 g kg^(-1),respectively.These three chemical traits were significantly different between sites and in longitudinal patterns across subtropical China.Mean annual temperature was positively related to root N concentration but negatively related to root P concentration.There were significant,negative relationships between clay content and root P concentration and between pH and root N concentration.Available N had no significant relationship with root N concentration,while available P was a significantly positive relationship with root P concentration.The combined effects of altitude,climate(temperature and precipitation)and soil properties(pH,clay content,available N and P)explained 26%and 36%of the root N and P concentrations variations,respectively.These environmental variables had direct and indirect effects and exhibited disproportionate levels of total effects on root N and P concentrations.Root N and P concentrations explained 35%and 65%variations in their mass ratios,respectively.The results highlight different spatial patterns of chemical traits and various environmental controls on root N and P concentrations in these ecosystems.More cause-effect relationships of root chemical traits with abiotic and biotic factors are needed to understand nutrient uptake strategies and the mechanisms controlling intraspecific variations in plant traits.展开更多
In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the ...In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.展开更多
Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal po...Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.展开更多
The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding ...The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding environment, increases species diversity, improves soil structure, raises soil fertility, enhances productivity, and promotes regional agricultural production and social economic development dramatically. Through the combining engineering and biological measures, the restoration of degraded ecosystem in low subtropical area is possible and economical. The restoration experience in Xiaoliang, Wuhua and other sites are valuable for other degraded subtropical area was introduced.展开更多
The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen bro...The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.32201547).
文摘Quantifying the biomass of saplings in the regeneration component is critical for understanding biogeochemical processes of forest ecosystems.However,accurate allometric equations have yet to be developed in sufficient detail.To develop species-specific and generalized allometric equations,154 saplings of eight Fagaceae tree species in subtropical China’s evergreen broadleaved forests were collected.Three dendrometric variables,root collar diameter(d),height(h),and crown area(ca)were applied in the model by the weighted nonlinear seemingly unrelated regression method.Using only d as an input variable,the species-specific and generalized allometric equations estimated the aboveground biomass reasonably,with R _(adj)^(2) values generally>0.85.Adding h and/or ca improved the fitting of some biomass components to a certain extent.Generalized equations showed a relatively large coefficient of variation but comparable bias to species-specific equations.Only in the absence of species-specific equations at a given location are generalized equations for mixed species recommended.The developed regression equations can be used to accurately calculate the aboveground biomass of understory Fagaceae regeneration trees in China’s subtropical evergreen broadleaved forests.
基金funded by the Guangxi Natural Science Foundation Program (2022GXNSFAA035583 and 2020GXNSFAA159108)National Natural Science Foundation of China (32060305)+2 种基金Foundation of Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, China (ERESEP 2021Z06)Chinese Forest Biodiversity Monitoring Network
文摘Here,we characterize the temporal and spatial dynamics of forest community structure and species diversity in a subtropical evergreen broad-leaved forest in China.We found that community structure in this forest changed over a 15-year period.Specifically,renewal and death of common species was large,with the renewal of individuals mainly concentrated within a few populations,especially those of Aidia canthioides and Cryptocarya concinna.The numbers of individual deaths for common species were concentrated in the small and mid-diameter level.The spatial distribution of community species diversity fluctuated in each monitoring period,showing a more dispersed diversity after the 15-year study period,and the coefficient of variation on quadrats increased.In 2010,the death and renewal of the community and the spatial variation of species diversity were different compared to other survey years.Extreme weather may have affected species regeneration and community stability in our subtropical monsoon evergreen broad-leaved forests.Our findings suggest that strengthening the monitoring and management of the forest community will help better understand the long-and short-term causes of dynamic fluctuations of community structure and species diversity,and reveal the factors that drive changes in community structure.
基金supported by the National Science Foundation of China(No.31770672 and 3137062)the National Basic Research Program of China(No.2010CB950602)。
文摘Atmospheric nitrogen(N)deposition is predicted to increase,especially in the subtropics.However,the responses of soil microorganisms to long-term N addition at the molecular level in N-rich subtropical forests have not been clarified.A long-term nutrient addition experiment was conducted in a subtropical evergreen old-growth forest in China.The four treatments were:control,low N(50 kg N ha^(-1)a^(-1)),high N(100 kg N ha^(-1)a^(-1)),and combined N and phosphorus(P)(100 kg N ha^(-1)a^(-1)+50 kg P ha^(-1)a^(-1)).Metagenomic sequencing characterized diversity and composition of soil microbial communities and used to construct bacterial/fungal co-occurrence networks.Nutrient-treated soils were more acidic and had higher levels of dissolved organic carbon than controls.There were no significant differences in microbial diversity and community composition across treatments.The addition of nutrients increased the abundance of copiotrophic bacteria and potentially beneficial microorganisms(e.g.,Gemmatimonadetes,Chaetomium,and Aureobasidium).Low N addition increased microbiome network connectivity.Three rare fungi were identified as module hubs under nutrient addition,indicating that low abundance fungi were more sensitive to increased nutrients.The results indicate that the overall composition of microbial communities was stable but not static to long-term N addition.Our findings provide new insights that can aid predictions of the response of soil microbial communities to long-term N addition.
基金funded by the National Natural Science Foundation of China(42107476,31901241)the China Postdoctoral Science Foundation(2020M682600)+1 种基金the China Postdoctoral International Exchange Fellowship Program(PC2021099)the Natural Science Foundation of Hunan Province(2021JJ41075).
文摘Trees progress through various growth stages,each marked by specific responses and adaptation strate-gies to environmental conditions.Despite the importance of age-related growth responses on overall forest health and management policies,limited knowledge exists regarding age-related effects on dendroclimatic relationships in key subtropical tree species.In this study,we employed a den-drochronological method to examine the impact of rapid warming on growth dynamics and climatic sensitivity of young(40–60 years)and old(100–180 years)Pinus mas-soniana forests across six sites in central-southern China.The normalized log basal area increment of trees in both age groups increased significantly following rapid warming in 1984.Trees in young forests further showed a distinct growth decline during a prolonged severe drought(2004–2013),whereas those in old forests maintained growth increases.Tree growth was more strongly influenced by temperature than by moisture,particularly in old forests.Spring tem-peratures strongly and positively impacted the growth of old trees but had a weaker effect on young ones.Old forests had a significantly lower resistance to extreme drought but faster recovery compared to young forests.The“divergence problem”was more pronounced in younger forests due to their heightened sensitivity to warming-induced drought and heat stress.With ongoing warming,young forests also may initially experience a growth decline due to their heightened sensitivity to winter drought.Our findings underscore the importance of considering age-dependent changes in forest/tree growth response to warming in subtropical forest man-agement,particularly in the context of achieving“Carbon Peak&Carbon Neutrality”goals in China.
基金Supported by Special Fund of Sichuan Financial Genetic Engineering(2011QNJJ-019)Science and Technology Support Program of Sichuan Province(2011NZ0068)"12th Five-Year Plan" Breeding Project of Crops and Livestock of Sichuan Province(2011NZ0098-15)~~
文摘[Objective] The aim was to make full use of light-heat resources to expand the potato planting area on the base of ensuring the production of main grain crops and the limited arable land. [Methods] Through catch crops, multiple cropping and intercropping, new multiple planting patterns of potato with efficiency are constructed, for the purpose of increasing yield and benefit of potato. [Result] In irrigated plain and hill area, three new planting patterns such as autumn potato/rope-rice,winter potato-rice-autumn potato, and autumn(winter) potato-rice were constructed.In dry land of plain and hill area, three new planting patterns such as spring(winter)potato/maize/sweet potato, spring(winter) potato/maize-autumn potato, and wheat + winter potato/maize/sweet potato were constructed. In plateau mountainous area, spring potato/maize was constructed. [Conclusion] With use of new planting patterns, the cropping index of new patterns was 200%-300%, while the accumulated temperature utilization was 68.9%-93.4%, light energy utilization was 0.98%-1.59% and straw utilization was 50%-100%. To compared with traditional planting patterns, the yield increased by 2.6%-93%, and benefit increased by 15.8%-284.3%. Furthermore,multiple planting patterns of potato have become main planting patterns in increasing yield and income in Sichuan.
基金Supported by Projects Funded by Scientific Research Special Fund for Public Welfare Industry (GYHY20076029)
文摘The monthly observed average precipitation data of 160 meteorological stations in China from 1960 to 2007,had been reorganized by the China Meteorological Administration.By employing that precipitation data,NCEP/NCAR reanalysis data and the index of intensity of western Pacific subtropical high,the seasonal variations of subtropical high and precipitation in eastern China during the past decades are discussed.The relationships between them also are discussed by correlation and composite analyses.The results show that the intensity of subtropical high,which has significantly strengthened in the recent 50 years,especially in spring,autumn and winter,has notable impact on the simultaneous rainfall in the eastern region of China for all seasons,especially in winter.
基金Project supported by the National Natural Sciences Foundation of China (No. 40471081)the National Key Basic Research Support Foundation (No. G1999011810)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-422)
文摘The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.
基金Project supported by the International Foundation of Science(No.C/2661-1)the National Key Basic Research Support Foundation of China(No.G1999011809).
文摘Agriculture is still the biggest contributor of non-point source (NPS) pollution to water bodies andrunoff discharges of nutrients and other chemicals are one of the most important pathways. This studywas conducted during 1998~1999 in a typical watershed with complex agriculture and forestry systems aswell as dotted farmer villages, in a transitional region between the mid- and northern subtropical zones ofChina. Continuous sampling of stream water was performed regularly at a weekly frequency, with additionalsampling after all major rainfall events. The discharges of N and P nutrients and suspended materials weremeasured and the total and area-averaged annual discharges of all components were calculated. The resultsshowed an uneven seasonal distribution of nutrient discharges with summer storms contributing most tothe total fluxes. This study demonstrated a high dependence of runoff volume on rainfall but the overallrunoff coefficients were dependent on land use type and watershed size. The area-averaged annual dischargesvaried greatly among the sub-watersheds with different sizes and land use structures. This is the first studyestimating the area-averaged annual discharges of N and P in the hilly areas of subtropical China, which were1.5 g m-2 a-1 and 0.1 g m-2 a-1, respectively, providing important reference values for the assessment ofregional agricultural non-point source pollution.
基金supported by the"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA05050205)"International Science&Technology Cooperation Program of China(2012DFB30030)""Youth Innovation Fund of Hunan Academy of forestry"and the CFERN&GENE Award Funds for Ecological Papers
文摘To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We sought to quantify the carbon sequestration potential. We sampled four forest types, shrub (SR), pine (Pinus massoniana) forest (PF), pin~ and broadleaf mixed forest (Mr) and evergreen broadleaf forest (BF). A regression equation was constructed using tree height and diameter at breast height (DBH) and elements of total tree biomass. The equation was subse- quently utilized to estimate tree carbon storage. The carbon storage of understory, litter, and soil was also estimated.
文摘Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.
基金Project supported by the National Natural Science Foundation of China (No. 30670392)the "100-Talent" Project of the Chinese Academy of Sciences (CAS).
文摘We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m^2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m^2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3^- in the soil.
文摘Rice production plays a crucial role in the food supply of China and a better understanding of the changes in paddy soil fertility and the management effects is of practical importance for increasing rice productivity. In this study, field sampling in a typical red soil region of subtropical China, Jiangxi Province, was used to observe changes in the soil physical, chemical, and biological properties in a cultivation chronosequence of paddy fields. After cultivation, clay (< 0.002 mm) content in the soil…
文摘There are about 1.27 million ha of upland red soils derived from Quaternary red clay facing the degradation in the low-hilly region of the middle subtropical China. From the aspects of chemistry, physics and microbiology, the processes of soil fertility restoration in the surface layer (0~20 cm) under three types of land use patterns (i.e. citrus orchard, tea garden and upland) in two provinces were studied in this work. Results showed that the reclamation of eroded waste land improved most of soil properties. Soil organic matter, total N and P, available P and K, and exchangeable Ca and Mg increased, but soil total K and exchangeable Al decreased. Soil PH decreased by 0.5 unit in the pure tea plantation for 20 years. Soil reclamation increased the percentage of soil microaggregates (<0.25 mm), especially those with a diameter of 0.02~0.002 mm. Soil total porosity increased in the cultivated lands with the increase of soil aeration and capillary porosity. The number of soil microorganisms increased with reclamation caused mainly by the huge increase of the total amount of bacteria. With the cultivation, the activity of soil urease and acid phosphatase increased, but that of invertase dropped.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41276002 and 41130859)the National Basic Research Program of China (Grant Nos. 2012CB955603 and 2013CB956201)+1 种基金the NSFC–Shandong Joint Fund for Marine Science Research Centers (Grant No. U1406401)the Fund for Open Research Programs of the Key Laboratory of Meteorological Disaster (Nanjing University of Information Science and Technology), Ministry of Education (KLME1301)
文摘An extreme rainstorm hit southern China during 13–17 December 2013, with a record-breaking daily rainfall rate, large spatial extent, and unusually long persistence. We examined what induced this heavy rainfall process, based on observed rainfall data and NCEP–NCAR reanalysis data through composite and diagnostic methods. The results showed that a Rossby waveguide within the subtropical westerly jet caused the event. The Rossby wave originated from strong cold air intrusion into the subtropical westerly jet over the eastern Mediterranean. With the enhancement and northward shift of the Middle East westerly jet, the Rossby wave propagated slowly eastward and deepened the India–Burma trough, which transported a large amount of moisture from the Bay of Bengal and South China Sea to southern China. Strong divergence in the upper troposphere, caused by the enhancement of the East Asian westerly jet, also favored the heavy rainfall process over Southeast China. In addition, the Rossby wave was associated with a negative-to-positive phase shift and enhancement of the North Atlantic Oscillation, but convergence in the eastern Mediterranean played the key role in the eastward propagation of the Rossby wave within the subtropical westerly jet.
基金supported by the National Basic Research Program of China (2007CB109301)the National Natural Science Foundation of China(40871 122)
文摘To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil organic C content. Changes in N mineralization, nitrification and denitrification, as well as their response to glucose addition were measured by incubation experiments in paddy soils derived from Quaternary red clay in subtropical China. Mineralization and denitrification were changed in order of increasing soil fertilities: high 〉 middle 〉 low. During the first week of incubation, net N mineralization and denitrification rates in paddy soil with high fertility were 1.9 and 1.1 times of those in soil with middle fertility and 5.3 and 2.9 times of those in soil with low fertility, respectively. Addition of glucose decreased net N mineralization by approximately 78.8, 109.2 and 177.4% in soils with high, middle and low fertility, respectively. However, denitrification rates in soils with middle and low fertility were increased by 14.4 and 166.2% respectively. The highest nitrate content among the paddy soils tested was 0.62 mg kg-1 and the highest nitrification ratio was 0.33%. Addition of glucose had no obvious effects on nitrate content and nitrification ratio. It was suggested that the intensity of mineralization and denitrification was quite different in soils with different fertility, and increased with increasing soil organic C content. Addition of glucose decreased mineralization, but increased denitrification, and the shifts were greater in soil with low than in soil with high organic C content. Neither addition of glucose nor inherent soil organic C had obvious effects on nitrification in paddy soils tested.
基金funded by the National Key Research and Development Program of China (Grant Number 2016YFD0600201)。
文摘Fine roots(<2 mm)play vital roles in water and nutrient uptake.However,intraspecific variations in their chemical traits and their controlling mechanisms remain poorly understood at a regional scale.This study examined these intraspecific variations in fine roots in Masson pine(Pinus massoniana Lamb.)plantations across subtropical China and their responses to environmental factors.Root nitrogen(N)and phosphorus(P)concentrations and their mass ratios(N:P)ranged from 3.5 to 11.7 g kg^(-1),0.2 to0.9 g kg^(-1),and 7.8 to 51.6 g kg^(-1),respectively.These three chemical traits were significantly different between sites and in longitudinal patterns across subtropical China.Mean annual temperature was positively related to root N concentration but negatively related to root P concentration.There were significant,negative relationships between clay content and root P concentration and between pH and root N concentration.Available N had no significant relationship with root N concentration,while available P was a significantly positive relationship with root P concentration.The combined effects of altitude,climate(temperature and precipitation)and soil properties(pH,clay content,available N and P)explained 26%and 36%of the root N and P concentrations variations,respectively.These environmental variables had direct and indirect effects and exhibited disproportionate levels of total effects on root N and P concentrations.Root N and P concentrations explained 35%and 65%variations in their mass ratios,respectively.The results highlight different spatial patterns of chemical traits and various environmental controls on root N and P concentrations in these ecosystems.More cause-effect relationships of root chemical traits with abiotic and biotic factors are needed to understand nutrient uptake strategies and the mechanisms controlling intraspecific variations in plant traits.
基金supported by the Special Public Welfare Research Fund of China Meteorological Administration (Grant No. GYHY201406020)the National Natural Science Foundation of China (Grant No. 41375055)
文摘In the summer of 2013, an unprecedented heat wave was experienced over a vast area of southern China. The great areal extent, duration, and strength of this high temperature are very rare. For the 2013 hot spell, the major and direct influence mostly came from the anomaly of the western Pacific subtropical high(WPSH). The abnormally strong and stable WPSH was associated with specific surrounding circulations. The eastward extension of a stronger Qinghai-Xizang high favored the westward extension of the WPSH. The weaker cold air activity from the polar region led to the northward shift of the WPSH and helped it to remain stable. In the tropics, the western segment of the ITCZ was abnormally strong in the period, and supported the maintenance of the WPSH from the south. In addition, the interdecadal variation of the WPSH provided a decadal background for the anomaly variation of the WPSH that summer.
基金This work was supported by the National Key Basic Research and Development Project of China 2004CB18300the Key Knowledge Innovation Project of Chinese Academy of Sciences(Grand No.KZCX3-SW-226)the National Natural Science Foundation of China under Grant Nos.40135020 and 40325015.
文摘Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.
文摘The environmental effect of degraded ecosystem's vegetation restoration in low subtropical China was studied. Results indicated that the vegetation recovery on degraded lands significantly ameliorates surrounding environment, increases species diversity, improves soil structure, raises soil fertility, enhances productivity, and promotes regional agricultural production and social economic development dramatically. Through the combining engineering and biological measures, the restoration of degraded ecosystem in low subtropical area is possible and economical. The restoration experience in Xiaoliang, Wuhua and other sites are valuable for other degraded subtropical area was introduced.
基金Project supported by the National Natural Science Foundation of China(No.30670392)the Knowledge Innovation Program of the Chinese Academy of Sciences(Nos.KZCX2-YW-432 and KSCX2-SW-133)
文摘The effects of simulated nitrogen(N)deposition on soil exchangeable cations were studied in three forest types of subtropical China.Four N treatments with three replications were designed for the monsoon evergreen broadleaf forest (mature forest):control(0 kg N ha-1 year-1),low N(50 kg N ha-1 year-1),medium N(100 kg N ha-1 year-1)and high N(150 kg N ha-1 year-1),and only three treatments(i.e.,control,low N,medium N)were established for the pine and mixed forests.Nitrogen had been applied continuously for 26 months before the measurement.The mature forest responded more rapidly and intensively to N additions than the pine and mixed forests,and exhibited some significant negative symptoms,e.g.,soil acidification,Al mobilization and leaching of base cations from soil.The pine and mixed forests responded slowly to N additions and exhibited no significant response of soil cations.Response of soil exchangeable cations to N deposition varied in the forests of subtropical China,depending on soil N status and land-use history.