Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining a...Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.展开更多
In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial dis...In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.展开更多
Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relative...Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.展开更多
The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive...The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.展开更多
The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species a...The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species and stand structure on Mt. Tieshanping in Chongqing metropolis,Southwest China. The seeds from the remnant EBLF naturally facilitate the restoration process of artificial Pinus massoniana forests near it. The similarity of species composition between the artificial Pinus massoniana forests and the remnant EBLF and biodiversity index of the artificial Pinus massoniana forests decrease as the distance from the remnant EBLF increases. Castanopsis carlesii var. spinusa is the dominant species in the ground vegetation,shrub layer and sub-tree layer of the Pinus massoniana forests near the remnant EBLF. However,the natural restoration processes of those farther away from the remnant EBLF are restricted for the absence of seed source of the inherent components of the remnant EBLF,and the anthropogenic measures should be taken to facilitate the restoration process.展开更多
Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current statu...Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.展开更多
Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urge...Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).展开更多
Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included l...Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.展开更多
The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper u...The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper unit weight plant organs as well as the measured data about the biological return and decomposition.Results showed that the vegetation layer had an annual S uptake of 55.02kg ha ̄(-1) , which accounted for 15.8% of the total S storage in the vegetation layer. The S uptake was the highest in the arbor layer but thelowest in the shrub layer. The biological return of S was 50% higher than the biological uptake, indicatingthe relatively high cycling efficiency of S. Nevertheless, S had a relatively low rate of biological release, so thatS trended to accumulate in the litter layer. S taken up by plants each year came mostly from precipitationand the reserve of soil.展开更多
In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succe...In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.展开更多
Through the long-term plot study on the litter and its decomposition in the evergreen broad-leaved forest ecosystem in Hangzhou for more than two years,it was resulted that the annual litter production was 5.85 t ha^-...Through the long-term plot study on the litter and its decomposition in the evergreen broad-leaved forest ecosystem in Hangzhou for more than two years,it was resulted that the annual litter production was 5.85 t ha^-1,most of which was the fallen leave (79.5 percent) and the withered branches and fruits were far less (7.1 and 13.4 percents respectively).The dynamics of the fallen litter was shown as a curve of two-peak pattern which appeared in April and September each year.The half-life of the litter was 1.59 years.The decay rate of the litter attenuted as an exponential function.The annual amount of the nutrient returned to the ground through the litter was as large as 223.69kg ha^-1.The total current amount of the litter on the ground was 7.47t ha^-1.The decay rate in the first half of a year was 45.18 percent.This ecosystem remained in the stage of litter increasing with time.展开更多
This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation...This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation in Hangzhou on the basis of the tested data concerning plant S contents. The result was that theS concentrations on the tree leaf surfaces varied with the testing time and plant species. The range of Scontents in various organs of a plant was 2.086- 4.245 S g kg ̄(-1), varying with plant species in this forest.The S content in the leaves was the highest, followed by that in the branches, trunks and roots, which showedthat there was an apical dominance of S distribution. The total amount of S storage in the vegetation wasas large as 349.97 S kg ha ̄(-1). The S distribution in this vegetation had two characteristics as follows: 1)for the vegetation layers, arbor layer > renewal layer > herb layer > shrub layer; and 2) for the verticaldistribution per unit height (m), root stratum (0 - 0.20 m of soil depth)> stratum nearby the ground surface(0 - 0.5m) > canopy (4.0- 9.5m) > trunk stratum (2.0- 4.0m).展开更多
The subtropical evergreen broadleaved forests(EBLFs),ranging in occurrence from c.23°N to 39°N and 97°E to 141°E,are amongst the most characteristic biomes in East Asia and are common in South Chin...The subtropical evergreen broadleaved forests(EBLFs),ranging in occurrence from c.23°N to 39°N and 97°E to 141°E,are amongst the most characteristic biomes in East Asia and are common in South China.They contribute fundamentally to both the biodiversity function and ecosystem services of the East Asiatic floristic kingdom.The East Asian subtropical EBLFs are considered as unique zonal vegetation that might have developed in concert with the Asian monsoons,particularly展开更多
Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The ...Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.展开更多
Forest disturbance and recovery are critical ecosystem processes,but the temporal patterns of disturbance have not been studied in subtropical China.Using a tree-ring analysis approach,we studied post-logging above-gr...Forest disturbance and recovery are critical ecosystem processes,but the temporal patterns of disturbance have not been studied in subtropical China.Using a tree-ring analysis approach,we studied post-logging above-ground(ABG)biomass recovery dynamics over a 26-year period in four plots with different degrees of logging disturbance.Before logging,the ABG biomass ranged from 291 to 309 t ha-1.Soon after logging,the plots in primary forest,secondary forest,mixed forest and singlespecies forest had lost 33,91,90 and 100%of their initial ABG biomass,respectively.Twenty-six years after logging,the plots had regained 147,62,80 and 92%of their original ABG biomass,respectively.Over the 26 years following logging,the mean CAI(Current annual increment)were 10.1,5.5,6.4 and 10.8 t ha^-1 a^-1 and the average MAI(Mean annual increment)8.7,2.5,5.6 and 7.8 t ha^-1 a^-1 for the four forest types,respectively.The results indicate that subtropical forests subjected to moderate logging or disturbances do not require intensive management and single-species plantings can rapidly restore the above-ground biomass to levels prior to heavy logging.展开更多
Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynami...Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynamics. This might also hold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China, but until now little existing knowledge is available for this question. In 2001, we chose to monitor the seed rain process of our mixed evergreen broad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park, Yichang, Hubei Province, China. The preliminary analyses show obvious variations in seed rain density, species compositions and timing of seed rain among four communities. The average seed rain densities of the four communities are 2.43 ± 5.15, 54.13 ±182.75, 10.05 ±19.30 and 24.91 ± 58.86 inds/m^2, respectively; about one tenth the values in other studies in subtropical forests of China. in each community, the seed production is dominated by a limited number of species, and the contributions from the others are generally minor. Fecundity of evergreen broadleaved tree species is weaker than deciduous species. The seed rain of four communities begins earlier than September, and stops before December, peaking from early September to late October. The beginning date, ending date and peak times of seed rain are extensively varied among the species, indicating different types of dispersal strategies. According to the existing data, the timing of seed rain is not determined by the climate conditions in the same period, while the density of seed rain may be affected by the disturbances of weather variations at a finer temporal resolution.展开更多
In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during v...In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during various succession stages o1 evergreen broad-leaf forest. The results showed that during various succession stages of evergreen broad-leaf forest in Yingzuijie National Nature Reserve, WD storage of each forest ranged from 1.26 to 8.82 t/hm^2, with the order of P. massoniana forest 〈 mixed broadleaf-coniferous forest 〈 evergreen broad-leaf forest, that is, it increased from early to late stages of the succession. At different succession stages, coarse woody debris (CWD) storage was 2 -9 times more than fine woody debris (FWD) storage, revealing that CWD was dominant in WD of each forest. CWD biomass accounted for 0.66% -2.21% of arbor biomass, so the forests were at the developmental stage.展开更多
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金Acknowledgments The authors thank Ming-Gang Zhang and Katharina Filz for suggestions about problem of multicollinearity and thank Damien Georges for suggestions about modeling.
文摘Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture,logging,planting of economic plants,mining activities and changing environment.The aims of the study are to investigate climate changeinduced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation.Stacked species distribution models were created to generate ensemble forecasting of species distributions,alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios.Under stacked species distribution models in rapid climate changes scenarios,changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity.This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan,highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201806,XLK201925)National Forestry Science and Technology Development Project(KJZXSA2018011,KJZXSA2019009)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2019132068)
文摘In this paper, secondary forest of Pinus massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest were taken as research objects, to explore carbon reserve of arbor layer and its spatial distribution characteristics. At different succession stages, the sequence of organic carbon content in each organ was secondary forest of P. massoniana > coniferous-broad-leaved mixed forest> broad-leaved evergreen forest. Carbon reserve of arbor layer was the highest in broad-leaved evergreen forest, which was 129.34 t/hm 2, followed by coniferous-broad-leaved mixed forest (95.83 t/hm 2), and the minimum was 85.27 t/hm 2 in secondary forest of P. massoniana . In each stand type, the sequence of carbon reserve of each organ in arbor layer was trunk>root>branch>leaf>bark. Carbon reserve of arbor layer mainly concentrated in trunk, and the proportion to carbon reserve of arbor layer declined from secondary forest of P. massoniana to broad-leaved evergreen forest, while it had increasing relationship in root. In secondary forest of P. massoniana , coniferous-broad-leaved mixed forest and broad-leaved evergreen forest, individual with the diameter more than 20 cm accounted for the majority of carbon reserve in the arbor layer.
基金supported by National Natural Science Foundation of China (No.30471386)Japanese Society for Promotion of Sciences (15P03118)
文摘Structure, species composition, and soil properties of a subtropical evergreen broad-leaved forest in Okinawa, Japan, were examined by establishment of plots at thirty sites. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 5400 stems-ha^-1 ( -〉 3.0 cm DBH); 64% of those stems were smaller than 10 cm DBH. The total basal area was 54.4 m^2-ha^-1, of which Castanopsis sieboldii contributed 48%. The forest showed high species diversity of trees. 80 tree species (≥ 3.0 cm DBH) from 31 families was identified in the thirty sampling plots. C. sieboldii and Schima wallichii were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were, 3.36 for Diversity index (H'), 0.71 for Equitability index (J') and 4.72 for Species richness index (S'), all of which strongly declined with the increase of importance value of the dominant, C. sieboldii. Measures of soil nutrients indicated low fertility, extreme heterogeneity and possible A1 toxicity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil exchangeable K^+, Ca^2+, and Ca^2+/Al^3- ratio (all p values 〈0.001) and a negative relationship with N, C and P. The results suggest that soil property is a major factor influencing forest composition and structure within the subtropical forest in Okinawa.
基金supported by the National Natural Science Foundation of China,No.41471051,41071040,31170195
文摘The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous,island-like,distribution.It is diverse,rich in endemic species,and likely to be sensitive to climate change.Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan.All trees with d.b.h.>1 cm in each plot were identified.Patterns of seed plant distributions were quantified at the specific,generic and family levels.The forests are dominated by the families Fagaceae,Lauraceae,Theaceae and Magnoliaceae,but are very diverse with only a few species shared between sites.Floristic similarities at the family and generic level were high,but they were low at the specific level,with species complementarity between plots.Diversity varied greatly among sites,with greater species richness and more rare species in western Yunnan than central Yunnan.The flora is dominated by tropical biogeographical elements,mainly the pantropic and the tropical Asian distributions at the family and genus levels.In contrast,at the species level,the flora is dominated by the southwest or the southeast China distributions,including Yunnan endemics.This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin,and has adapted to cooler temperatures with the uplift of the Himalayas.Due to great sensitivity to climate,high endemism and species complementarity,as well as the discontinuous,island-like,distribution patterns of the upper montane forest in Yunnan,the regional conservation of the forest is especially needed.
基金Project(30700094) supported by the National Natural Science Foundation of ChinaProject (CSTC, 2008BB7187) supported by the Natural Science Foundation of CQ CSTC, China+2 种基金Project (20092x07104-003-02)supported by the National Science and Technology MinistrySubsidy from the Pro Natural Fund of Japan for 2007Research project for a sustainable development of economic and social structure dependent on the environment of the eastern coast of Asia from Tokyo University of Information
文摘The effects of urban remnant natural evergreen broad-leaved forest (EBLF) on the restoration of artificial pine forests surrounding it were studied with reference to species composition,biodiversity,dominant species and stand structure on Mt. Tieshanping in Chongqing metropolis,Southwest China. The seeds from the remnant EBLF naturally facilitate the restoration process of artificial Pinus massoniana forests near it. The similarity of species composition between the artificial Pinus massoniana forests and the remnant EBLF and biodiversity index of the artificial Pinus massoniana forests decrease as the distance from the remnant EBLF increases. Castanopsis carlesii var. spinusa is the dominant species in the ground vegetation,shrub layer and sub-tree layer of the Pinus massoniana forests near the remnant EBLF. However,the natural restoration processes of those farther away from the remnant EBLF are restricted for the absence of seed source of the inherent components of the remnant EBLF,and the anthropogenic measures should be taken to facilitate the restoration process.
基金Supported by International Science&Technology Cooperation Program of China(2012DFB30030)Science and Technology Plan Project of Hunan Forestry(XLK201417)+1 种基金Youth Science and Technology Innovation Fund of Hunan Academy of Forestry(2013LQJ08,2013LQJ11)Science and Technology Plan Project of Hunan Provincial Department of Science and Technology(2012WK4010)
文摘Evergreen broad-leaved forest is an important forest type in China.This paper analyzes the allocation characteristics of vegetation and soil carbon pool of evergreen broad-leaved forest,to understand the current status of research on the carbon storage of evergreen broadleaved forest as well as shortcomings.In the context of global climate change,it is necessary to carry out the long-term research of evergreen broad-leaved forest,in order to grasp the formation mechanism of evergreen broad-leaved forest productivity,and the impact of climate change on the carbon sequestration function of evergreen broad-leaved forest ecosystem.
基金This item was supportedby the National ScienceFoundationof P.R.China (No.39330040,39460022)
文摘Evergreen broad-leaved forestis one of the most important vegetation types in China.Because of the human activities,evergreen broad-leaved forest has been destroyed extensively,leading to degraded ecosystem.It is urgent to conserve and restore these natural forests in China. In this paper,the tendency and rate of species diversity restoration of the evergreen broad-leaved forest in Daming Mountain has been studied.The main resultsare as follows:(a)In subtropical mid-mountain area,species diversity in degraded evergreen broad-leaved forestcan be restored. Through analyzing b diversity index of communities in different time and space,it was found that the species composition of communities tend to be the same as that in the zonal evergreen broad-leaved forest.(b)The restoration rate of evergreen broad-leaved forest was very fast.Planting Chinese fir after clear-cutting and controlled burning of the forest,178 species appeared in a 600m^2 sample area after 20 years’natural recovering.Among the sespecies,58 were tree layer and the height of community reached 18m.The survey suggested that it would take only 20 years for the degraded forest to develop into community composed of lightdemanding broad-leaved pioneer trees and min-tolerance broad-leaved trees,and it need another 40~80 years to reach the stage consisting of min-tolerance evergreen broad-leaved trees.(c)Species number increased quickly at the early stage(2-20years)during vegetation recovering process toward the climax,and decreased at the min-stage (50-60 years),then maintained a relatively stable level at the late-stage (over 150 years).
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Institute of Soil Science, Chinese Academy of Sciences.
文摘Through the long-term plot studies on the precipitation distribution in the evergreen broad-leaved forest ecosystem in Hangzhou for two years, it was indicated that the pattern of precipitation distribution included larger amounts of penetration water and stemflow and a lower amount of interception water. The results revealed that the main factors to infulence the percentages of penetration and stemflow were the air temperature and the leaf area of the forest. The quantity of seepage through the litter layer was much larger than that through the soil layers which decreased sharply with soil depth. The output of water from the ecosystem by surface runoff and deep infiltration through the soil was much lower, only being 5.20 percent of the rainfall, while the water evapotranspiration loss was as large as more than 90 percent of it. The losses by the soil evaporation and plant evapotranspiration were the largest part of output in this forest ecosystem.
文摘The work was carried out to study the uptake, storage and return of S in the evergreen broad-leaved forestecosystem of Hangzhou in Zhejiang Province, China, based on the annual increments of plants and S contentsper unit weight plant organs as well as the measured data about the biological return and decomposition.Results showed that the vegetation layer had an annual S uptake of 55.02kg ha ̄(-1) , which accounted for 15.8% of the total S storage in the vegetation layer. The S uptake was the highest in the arbor layer but thelowest in the shrub layer. The biological return of S was 50% higher than the biological uptake, indicatingthe relatively high cycling efficiency of S. Nevertheless, S had a relatively low rate of biological release, so thatS trended to accumulate in the litter layer. S taken up by plants each year came mostly from precipitationand the reserve of soil.
基金Sponsored by Forestry Science and Technology Plan of Hunan Province(XLK201925,XLK201806)National Forestry Science and Technology Development Project(KJZXSA2018011)Operational Subsidy Project of National Forestry Science and Technology Innovation Platform(2018-LYPT-DW-064)
文摘In this paper, the Pinus massoniana forest in the early stage of succession, the coniferous broad-leaved mixed forest in the middle stage of succession, and the evergreen broad-leaved forest in the late stage of succession were studied, and the biomass and its spatial distribution characteristics of the tree layer in different succession stages of the ecosystem were discussed. The results showed that the biomass of the arbor layer was the highest in the evergreen broad-leaved forest, which was 292.51 t/ hm2, followed by the coniferous and broad-leaved mixed forest, which was 206.87 t/hm2, and the Pinus massoniana forest, which was 171.76 t/hm2. The biomass of trunks accounted for the largest proportion in the total biomass of the arbor layer, which reduced from the Pinus massoniana forest to the evergreen broad-leaved forest. The proportion of the biomass of roots in the total biomass of the arbor layer increased from the Pinus massoniana forest to the evergreen broad-leaved forest. The biomass of the diameter class above 20 cm in the Pinus massoniana forest, the coniferous and broad-leaved mixed forest and the evergreen broad-leaved forest accounted for a large proportion of total biomass.
基金Project supported by the Laboratory of Material Cycling in Pedosphere, Insitute of Soil Science, Chinese Academy of Sciences.
文摘Through the long-term plot study on the litter and its decomposition in the evergreen broad-leaved forest ecosystem in Hangzhou for more than two years,it was resulted that the annual litter production was 5.85 t ha^-1,most of which was the fallen leave (79.5 percent) and the withered branches and fruits were far less (7.1 and 13.4 percents respectively).The dynamics of the fallen litter was shown as a curve of two-peak pattern which appeared in April and September each year.The half-life of the litter was 1.59 years.The decay rate of the litter attenuted as an exponential function.The annual amount of the nutrient returned to the ground through the litter was as large as 223.69kg ha^-1.The total current amount of the litter on the ground was 7.47t ha^-1.The decay rate in the first half of a year was 45.18 percent.This ecosystem remained in the stage of litter increasing with time.
文摘This paper reveals the variations of S concentration among the leaf surface and other organs of variousplant species, and presents the distribution natures of S storage in the evergreen broad-leaved forest vege-tation in Hangzhou on the basis of the tested data concerning plant S contents. The result was that theS concentrations on the tree leaf surfaces varied with the testing time and plant species. The range of Scontents in various organs of a plant was 2.086- 4.245 S g kg ̄(-1), varying with plant species in this forest.The S content in the leaves was the highest, followed by that in the branches, trunks and roots, which showedthat there was an apical dominance of S distribution. The total amount of S storage in the vegetation wasas large as 349.97 S kg ha ̄(-1). The S distribution in this vegetation had two characteristics as follows: 1)for the vegetation layers, arbor layer > renewal layer > herb layer > shrub layer; and 2) for the verticaldistribution per unit height (m), root stratum (0 - 0.20 m of soil depth)> stratum nearby the ground surface(0 - 0.5m) > canopy (4.0- 9.5m) > trunk stratum (2.0- 4.0m).
基金funded by the National Key Basic Research Program of Chinathe Strategic Priority Research Program of the Chinese Academy of Sciences+2 种基金the National Natural Science Foundation of Chinathe Applied Fundamental Research Foundation of Yunnan Provincethe China Postdoctoral Science Foundation
文摘The subtropical evergreen broadleaved forests(EBLFs),ranging in occurrence from c.23°N to 39°N and 97°E to 141°E,are amongst the most characteristic biomes in East Asia and are common in South China.They contribute fundamentally to both the biodiversity function and ecosystem services of the East Asiatic floristic kingdom.The East Asian subtropical EBLFs are considered as unique zonal vegetation that might have developed in concert with the Asian monsoons,particularly
文摘Dynamical patterns of mineral elements during decomposition processes were investigated for seven common canopy species in a subtropical evergreen broad-leaved forest by means of litterbag technique over 2 years. The species studied are representative for the vegetation in the study area and differed significantly in chemical qualities of their litter. No significant relationships were found between decomposition rate (percentage dry mass remaining and decomposition constant k) and initial element cuncentrations.However, there were significant correlations betweeu the percentage of dry mass remaining and the mineral element concentrations in the remaining litter for most cases. The rank of the element mobility in decomposition process was as follows: Na = K 〉 Mg ≥ Ca 〉 N ≥ Mn ≥ Zn ≥ P 〉 Cu 〉〉 Al 〉〉 Fe. Concentrations of K and Na decreased in all species as decomposition proceeded. Calcium and Mg also decreased in concentrntion but with a temporal increase in the initial phase of decomposition, while the concentrations of other elements (Zn, Cu, AL and Fei increased for all species with exception of Mn which revealed a different pattern in different species. In most species, microelements (Cu, Al, and Fe) significantly increased in absolute amounts at the end of the litterbag incubation, which could be ascribed to a lange extent to the mechanism of abiotic fixation to humic substances rather than biological immobilization.
文摘Forest disturbance and recovery are critical ecosystem processes,but the temporal patterns of disturbance have not been studied in subtropical China.Using a tree-ring analysis approach,we studied post-logging above-ground(ABG)biomass recovery dynamics over a 26-year period in four plots with different degrees of logging disturbance.Before logging,the ABG biomass ranged from 291 to 309 t ha-1.Soon after logging,the plots in primary forest,secondary forest,mixed forest and singlespecies forest had lost 33,91,90 and 100%of their initial ABG biomass,respectively.Twenty-six years after logging,the plots had regained 147,62,80 and 92%of their original ABG biomass,respectively.Over the 26 years following logging,the mean CAI(Current annual increment)were 10.1,5.5,6.4 and 10.8 t ha^-1 a^-1 and the average MAI(Mean annual increment)8.7,2.5,5.6 and 7.8 t ha^-1 a^-1 for the four forest types,respectively.The results indicate that subtropical forests subjected to moderate logging or disturbances do not require intensive management and single-species plantings can rapidly restore the above-ground biomass to levels prior to heavy logging.
基金the National Natural Science Foundation of China(30000024,30470313).
文摘Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynamics. This might also hold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China, but until now little existing knowledge is available for this question. In 2001, we chose to monitor the seed rain process of our mixed evergreen broad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park, Yichang, Hubei Province, China. The preliminary analyses show obvious variations in seed rain density, species compositions and timing of seed rain among four communities. The average seed rain densities of the four communities are 2.43 ± 5.15, 54.13 ±182.75, 10.05 ±19.30 and 24.91 ± 58.86 inds/m^2, respectively; about one tenth the values in other studies in subtropical forests of China. in each community, the seed production is dominated by a limited number of species, and the contributions from the others are generally minor. Fecundity of evergreen broadleaved tree species is weaker than deciduous species. The seed rain of four communities begins earlier than September, and stops before December, peaking from early September to late October. The beginning date, ending date and peak times of seed rain are extensively varied among the species, indicating different types of dispersal strategies. According to the existing data, the timing of seed rain is not determined by the climate conditions in the same period, while the density of seed rain may be affected by the disturbances of weather variations at a finer temporal resolution.
基金Supported by the International Science and Technology Cooperation Program of China(2011DFA90740)Science and Technology Cooperation Program between Ministry of Science and Technology of China and European Union(0906)+1 种基金Research and Innovation Foundation for Young Scholars of Hunan Academy of Forestry(2013LQJ08)Forestry Science and Technology Program of Hunan Province,China(XLK201417)
文摘In Yingzuijie National Nature Reserve, Pinus massoniana forest, mixed broadleaf-coniferous forest and evergreen broad-leaf forest were investigated to study the changing characteristics of woody debris (WD) during various succession stages o1 evergreen broad-leaf forest. The results showed that during various succession stages of evergreen broad-leaf forest in Yingzuijie National Nature Reserve, WD storage of each forest ranged from 1.26 to 8.82 t/hm^2, with the order of P. massoniana forest 〈 mixed broadleaf-coniferous forest 〈 evergreen broad-leaf forest, that is, it increased from early to late stages of the succession. At different succession stages, coarse woody debris (CWD) storage was 2 -9 times more than fine woody debris (FWD) storage, revealing that CWD was dominant in WD of each forest. CWD biomass accounted for 0.66% -2.21% of arbor biomass, so the forests were at the developmental stage.