Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are...Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.展开更多
The fabrication and characterization of p-i-n photodiodes integrated with wide spectrum focusing reflectors using nonperiodic strip and concentric-circular subwavelength gratings are presented. The experimental result...The fabrication and characterization of p-i-n photodiodes integrated with wide spectrum focusing reflectors using nonperiodic strip and concentric-circular subwavelength gratings are presented. The experimental results show that the gratings can reflect and focus the incident light on the absorber of the photodiode, and thus can simultaneously achieve high speed and high efficiency. For the gratings’ integrated photodiodes, the responsivity is improved over a wide spectral range, and when the absorber was 600 nm and the mesa diameter was40 μm, a responsivity of 0.46 A/W at a wavelength of 1.55 μm and a 3 dB bandwidth of 21.6 GHz under a reverse bias of 3 V were simultaneously obtained.展开更多
A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated res...A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.展开更多
A dielectric transmittance filter composed of subwavelength grating sandwiched between two few-layers distributed Bragg reflectors (DBRs) is proposed with the aim of being compatible with CMOS technology and to be tun...A dielectric transmittance filter composed of subwavelength grating sandwiched between two few-layers distributed Bragg reflectors (DBRs) is proposed with the aim of being compatible with CMOS technology and to be tunable by lithographic means of the grating pattern without the need of thickness changes, in the broad spirit of metamaterials. The DBR mirrors form a Fabry-Perot (FP) cavity whose resonant frequency can be tuned by changing the effective refractive index of the cavity, here, by tailoring the in-plane filling factor of the grating. The structure has been studied and designed by performing numerical simulations using Fourier Modal Method (FMM). This filter proves to have high broad angular tolerance up to ±30˚. This feature is crucial for evaluating the spectral performance of narrow-band filters especially the so-called Ambient light sensors (ALS). By analyzing the transmittance spectral distributions in the band diagram, it is found that the angular tolerance is due to coupling between the FP and the guided mode inside the cavity in analogy to resonances occurring within multimode periodic waveguides in a different context.展开更多
Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensin...Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensing applications. We provide an overview of our recent work on developing wavelength selective SWG waveguide filters based on Bragg gratings and ring resonators, as well as optical delay lines. These components increase the SWG waveguide component toolbox and can be used to realize more complex photonic integrated circuits with enhanced or new functionality.展开更多
Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including op...Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including optical sensing,spectroscopy,and nonlinear optics.However,mid-IR silicon PICs typically show moderate performance compared to state-of-the-art silicon photonic devices operating in the telecommunication band.Here,we proposed and demonstrated suspended nanomembrane silicon(SNS)PICs with light-guiding within deep-subwavelength waveguide thickness for operation in the short-wavelength mid-IR region.We demonstrated key building components,namely,grating couplers,waveguide arrays,micro-resonators,etc.,which exhibit excellent performances in bandwidths,back reflections,quality factors,and fabrication tolerance.Moreover,the results show that the proposed SNS PICs have high compatibility with the multi-project wafer foundry services.Our study provides an unprecedented platform for mid-IR integrated photonics and applications.展开更多
We designed a tunable wavelength-selective quasi-resonant cavity enhanced photodetector(QRCE-PD)based on a high-contrast subwavelength grating(SWG).According to simulation results,its peak quantum efficiency is 93.2%t...We designed a tunable wavelength-selective quasi-resonant cavity enhanced photodetector(QRCE-PD)based on a high-contrast subwavelength grating(SWG).According to simulation results,its peak quantum efficiency is 93.2%the 3 dB bandwidth is 33.5 GHz,the spectral linewidth is 0.12 nm,and the wavelength-tuning range is 28 nm(1536-1564 nm).The QRCE-PD contains a tunable Fabry-Perot(F-P)filtering cavity(FPC),a symmetrical SWG deflection reflector(SSWG-DR),and a built-in p-i-n photodiode.The FPC and the SSWG-DR form an equivalent multi-region F-P cavity together by multiple mutual mirroring,which makes the QRCE-PD a multi-region resonant cavity enhanced photodetector.But,QRCE-PD relies on the multiple-pass absorption enhanced effect to achieve high quantum efficiency,rather than the resonant cavity enhanced effect.This new photodetector structure is significant for the application in the dense wavelength division multiplexing systems.展开更多
We proposed a method to form a flat transmitted serrated-phase(SP) high-contrast-index subwavelength grating(HCG) beam splitter(HBS) for all dielectric materials, which is to alternately arrange two kinds of grating b...We proposed a method to form a flat transmitted serrated-phase(SP) high-contrast-index subwavelength grating(HCG) beam splitter(HBS) for all dielectric materials, which is to alternately arrange two kinds of grating bars with a phase difference of π. Compared to the typical linear-phase(LP) HBS, which consists of two symmetrical deflecting gratings, the SP-HBS is extensible in size, and can achieve excellent splitting ability regardless of normal incidence or small-angle oblique incidence with large deflection angles, higher diffraction efficiency,lower energy loss, and higher tolerance of fabrication accuracy. Furthermore, the incident light can be split in half at any part of the SP-HBS, and the output beams of light maintain the original shape. In this Letter, we designed an SP-HBS with a 44.8° deflection angle and a 90.28% transmissivity.展开更多
Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and s...Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and supporting high-order modes,mainly due to the intrinsic large material groupvelocity dispersion(GVD),which make it challenging to selectively couple different-order spatial modes.We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure,which enables a robust and fully scalable MDM process.We demonstrate a record-high-order MDM device that supports TE_(0)–TE_(15)modes simultaneously.40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit∕s net data rate,which is the highest data rate ever reported for an on-chip single-wavelength transmission.Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism,such as high-capacity optical interconnects,high-dimensional quantum communications,and large-scale neural networks.展开更多
Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emi...Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for Ols and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Espe- cially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.展开更多
Dispersion engineering of optical waveguides is among the most important steps in enabling the realization of Kerr optical frequency combs.A recurring problem is the limited bandwidth in which the nonlinear phase matc...Dispersion engineering of optical waveguides is among the most important steps in enabling the realization of Kerr optical frequency combs.A recurring problem is the limited bandwidth in which the nonlinear phase matching condition is satisfied,due to the dispersion of the waveguide.This limitation is particularly stringent in high-index-contrast technologies such as silicon-on-insulator.We propose a general approach to stretch the bandwidth of Kerr frequency combs based on subwavelength engineering of single-mode waveguides with self-adaptive boundaries.The wideband flattened dispersion operation comes from the particular property of the waveguide optical mode that automatically self-adapts its spatial profile at different wavelengths to slightly different effective spatial spans determined by its effective index values.This flattened dispersion relies on the squeezing of small normal-dispersion regions between two anomalous spectral zones,which enables it to achieve two Cherenkov radiation points and substantially broaden the comb,achieving a bandwidth between 2.2 and 3.4μm wavelength.This strategy opens up a design space for trimming the spectra of Kerr frequency combs using high-index-contrast platforms and can provide benefits to various nonlinear applications in which the manipulation of energy spacing and phase matching are pivotal.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60636030)
文摘Fourier modal method incorporating staircase approximation is used to study tapered crossed subwavelength gratings in this paper. Three intuitive formulations of eigenvalue functions originating from the prototype are presented, and their convergences are compared through numerical calculation. One of them is found to be suitable in modeling the diffraction efficiency of the circular tapered crossed subwavelength gratings without high absorption, and staircase approximation is further proven valid for non-highly-absorptive tapered gratings. This approach is used to simulate the "moth-eye" antireflection surface on silicon, and the numerical result agrees well with the experimental one.
基金funded by the National Natural Science Foundation of China(NSFC)(Nos.61574019,61674020,and 61274044)the 111 Project(No.B07005)+2 种基金the Beijing Municipality Natural Science Foundation(No.4132069)the Program for Changjiang ScholarsInnovative Research Team in University through the Ministry of Education of China(No.IRT0609)
文摘The fabrication and characterization of p-i-n photodiodes integrated with wide spectrum focusing reflectors using nonperiodic strip and concentric-circular subwavelength gratings are presented. The experimental results show that the gratings can reflect and focus the incident light on the absorber of the photodiode, and thus can simultaneously achieve high speed and high efficiency. For the gratings’ integrated photodiodes, the responsivity is improved over a wide spectral range, and when the absorber was 600 nm and the mesa diameter was40 μm, a responsivity of 0.46 A/W at a wavelength of 1.55 μm and a 3 dB bandwidth of 21.6 GHz under a reverse bias of 3 V were simultaneously obtained.
基金Supported by the Natural Science Foundation of Hebei Province under Grant Nos A2013402069 and A2013402081
文摘A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.
文摘A dielectric transmittance filter composed of subwavelength grating sandwiched between two few-layers distributed Bragg reflectors (DBRs) is proposed with the aim of being compatible with CMOS technology and to be tunable by lithographic means of the grating pattern without the need of thickness changes, in the broad spirit of metamaterials. The DBR mirrors form a Fabry-Perot (FP) cavity whose resonant frequency can be tuned by changing the effective refractive index of the cavity, here, by tailoring the in-plane filling factor of the grating. The structure has been studied and designed by performing numerical simulations using Fourier Modal Method (FMM). This filter proves to have high broad angular tolerance up to ±30˚. This feature is crucial for evaluating the spectral performance of narrow-band filters especially the so-called Ambient light sensors (ALS). By analyzing the transmittance spectral distributions in the band diagram, it is found that the angular tolerance is due to coupling between the FP and the guided mode inside the cavity in analogy to resonances occurring within multimode periodic waveguides in a different context.
基金supported in part by the NSERC NGON and Si EPIC CREATE programs,NSERC SPG,and the Royal Society International Exchanges Scheme 2012/R2
文摘Subwavelength grating(SWG) waveguides in silicon-on-insulator are emerging as an enabling technology for implementing compact, high-performance photonic integrated devices and circuits for signal processing and sensing applications. We provide an overview of our recent work on developing wavelength selective SWG waveguide filters based on Bragg gratings and ring resonators, as well as optical delay lines. These components increase the SWG waveguide component toolbox and can be used to realize more complex photonic integrated circuits with enhanced or new functionality.
基金partly supported by the National Natural Science Foundation of China(NSFC)(62175179,62161160335)Natural Science Foundation of Tianjin Municipality,China(23JCJQJC00250)+1 种基金Natural Science Foundation of Guangdong Province,China(2022B1515130002,2023A1515011189)Japan Society for the Promotion of Science(JSPS)(JP18K13798).
文摘Leveraging the low linear and nonlinear absorption loss of silicon at mid-infrared(mid-IR)wavelengths,silicon photonic integrated circuits(PICs)have attracted significant attention for mid-IR applications including optical sensing,spectroscopy,and nonlinear optics.However,mid-IR silicon PICs typically show moderate performance compared to state-of-the-art silicon photonic devices operating in the telecommunication band.Here,we proposed and demonstrated suspended nanomembrane silicon(SNS)PICs with light-guiding within deep-subwavelength waveguide thickness for operation in the short-wavelength mid-IR region.We demonstrated key building components,namely,grating couplers,waveguide arrays,micro-resonators,etc.,which exhibit excellent performances in bandwidths,back reflections,quality factors,and fabrication tolerance.Moreover,the results show that the proposed SNS PICs have high compatibility with the multi-project wafer foundry services.Our study provides an unprecedented platform for mid-IR integrated photonics and applications.
基金This work was supported in part by the National Key Research and Development Program of China(No.2018YFB2200803).
文摘We designed a tunable wavelength-selective quasi-resonant cavity enhanced photodetector(QRCE-PD)based on a high-contrast subwavelength grating(SWG).According to simulation results,its peak quantum efficiency is 93.2%the 3 dB bandwidth is 33.5 GHz,the spectral linewidth is 0.12 nm,and the wavelength-tuning range is 28 nm(1536-1564 nm).The QRCE-PD contains a tunable Fabry-Perot(F-P)filtering cavity(FPC),a symmetrical SWG deflection reflector(SSWG-DR),and a built-in p-i-n photodiode.The FPC and the SSWG-DR form an equivalent multi-region F-P cavity together by multiple mutual mirroring,which makes the QRCE-PD a multi-region resonant cavity enhanced photodetector.But,QRCE-PD relies on the multiple-pass absorption enhanced effect to achieve high quantum efficiency,rather than the resonant cavity enhanced effect.This new photodetector structure is significant for the application in the dense wavelength division multiplexing systems.
基金supported by the National Natural Science Foundation of China (Nos. 61674018,61574019,and 61674020)。
文摘We proposed a method to form a flat transmitted serrated-phase(SP) high-contrast-index subwavelength grating(HCG) beam splitter(HBS) for all dielectric materials, which is to alternately arrange two kinds of grating bars with a phase difference of π. Compared to the typical linear-phase(LP) HBS, which consists of two symmetrical deflecting gratings, the SP-HBS is extensible in size, and can achieve excellent splitting ability regardless of normal incidence or small-angle oblique incidence with large deflection angles, higher diffraction efficiency,lower energy loss, and higher tolerance of fabrication accuracy. Furthermore, the incident light can be split in half at any part of the SP-HBS, and the output beams of light maintain the original shape. In this Letter, we designed an SP-HBS with a 44.8° deflection angle and a 90.28% transmissivity.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2800103)National Natural Science Foundation of China(NSFC)(Grant Nos.62105202,61835008,61860206001,61975115,62035016,and 62105200).
文摘Mode-division multiplexing(MDM)technology enables high-bandwidth data transmission using orthogonal waveguide modes to construct parallel data streams.However,few demonstrations have been realized for generating and supporting high-order modes,mainly due to the intrinsic large material groupvelocity dispersion(GVD),which make it challenging to selectively couple different-order spatial modes.We show the feasibility of on-chip GVD engineering by introducing a gradient-index metamaterial structure,which enables a robust and fully scalable MDM process.We demonstrate a record-high-order MDM device that supports TE_(0)–TE_(15)modes simultaneously.40-GBaud 16-ary quadrature amplitude modulation signals encoded on 16 mode channels contribute to a 2.162 Tbit∕s net data rate,which is the highest data rate ever reported for an on-chip single-wavelength transmission.Our method can effectively expand the number of channels provided by MDM technology and promote the emerging research fields with great demand for parallelism,such as high-capacity optical interconnects,high-dimensional quantum communications,and large-scale neural networks.
文摘Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for Ols and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Espe- cially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.
基金the French national research agency(BRIGHT ANR project)
文摘Dispersion engineering of optical waveguides is among the most important steps in enabling the realization of Kerr optical frequency combs.A recurring problem is the limited bandwidth in which the nonlinear phase matching condition is satisfied,due to the dispersion of the waveguide.This limitation is particularly stringent in high-index-contrast technologies such as silicon-on-insulator.We propose a general approach to stretch the bandwidth of Kerr frequency combs based on subwavelength engineering of single-mode waveguides with self-adaptive boundaries.The wideband flattened dispersion operation comes from the particular property of the waveguide optical mode that automatically self-adapts its spatial profile at different wavelengths to slightly different effective spatial spans determined by its effective index values.This flattened dispersion relies on the squeezing of small normal-dispersion regions between two anomalous spectral zones,which enables it to achieve two Cherenkov radiation points and substantially broaden the comb,achieving a bandwidth between 2.2 and 3.4μm wavelength.This strategy opens up a design space for trimming the spectra of Kerr frequency combs using high-index-contrast platforms and can provide benefits to various nonlinear applications in which the manipulation of energy spacing and phase matching are pivotal.