This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elabora...This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elaborate the facilities and equipment of this station,especially the node layout and passenger flow field.An optimization scheme is proposed to rapidly distribute the passenger flow in Huoying Station by adjusting the operation time of the escalator in the direction of Xizhimen.The authors adopt Queuing theory and Anylogic simulation software to simulate the original and the optimized schemes of Huoying Station to distribute the passenger flow.The results of the simulation indicate that the optimized scheme could effectively alleviate the traffic congestion in the hall of Huoying Station,and the pedestrian density in other places of the hall is lowered;passengers could move freely in the hall and no new congestion points would form.The rationality of the scheme is thus proved.展开更多
It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the inv...It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the investigation of passenger flow status of different types of subway station on different sections, and analysis of the passenger flow characteristics of pedestrian facilities, such as station channels, stairs and escalators, some suggestions of pedestrian facilities parameters of the station design are put forward.展开更多
This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passi...This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.展开更多
随着城市轨道交通的快速发展,客流量的准确预测对于改善运营服务至关重要。为了解决当前地铁客流预测存在的时空特性挖掘不充分等问题,进一步提高预测的精度与效率,研究了基于动态图神经常微分方程模型(multivariate time series with d...随着城市轨道交通的快速发展,客流量的准确预测对于改善运营服务至关重要。为了解决当前地铁客流预测存在的时空特性挖掘不充分等问题,进一步提高预测的精度与效率,研究了基于动态图神经常微分方程模型(multivariate time series with dynamic graph neural ordinary differential equations,MTGODE)的地铁短时客流预测方法。该方法通彭颢1贺玉过学习地铁站点间的动态关联强度构建动态拓扑图结构,基于学习得到的动态图进行连续图传播以传递时空信息、挖掘客流的依赖关系,并采用残差卷积提取多时间尺度下的周期性模式,实现了对站点间时空动态的连续表征,克服了传统图卷积网络模型难以刻画动态空间依赖的局限性。此外,为了充分挖掘不同站点间客流分布的时空规律,综合利用北京地铁自动售检票系统(auto fare collection,AFC)刷卡数据、天气数据、空气质量数据以及车站周边用地属性数据构建多源融合的客流预测模型。通过选取地铁北京站和积水潭站-东直门站的历史数据开展进站客流和OD客流预测实验,结果表明:与多个基准模型相比,该模型在平均绝对误差、均方根误差和平均百分比误差这3个指标中均取得了更优的预测效果,相较最优基准模型扩散卷积循环神经网络(diffusion convolutional recurrent neural network,DCRNN)分别降低了9.93%,12.30%,9.23%,对地铁客流时空分布的拟合程度更好,模型具有更好的预测精度、稳定性和拟合能力。展开更多
基金This research is supported by Beijing Municipal Natural Science Foundation(9204023)Ministry of Education“Tiancheng Huizhi”Innovation and Education Promotion Foundation(2018A01012).
文摘This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elaborate the facilities and equipment of this station,especially the node layout and passenger flow field.An optimization scheme is proposed to rapidly distribute the passenger flow in Huoying Station by adjusting the operation time of the escalator in the direction of Xizhimen.The authors adopt Queuing theory and Anylogic simulation software to simulate the original and the optimized schemes of Huoying Station to distribute the passenger flow.The results of the simulation indicate that the optimized scheme could effectively alleviate the traffic congestion in the hall of Huoying Station,and the pedestrian density in other places of the hall is lowered;passengers could move freely in the hall and no new congestion points would form.The rationality of the scheme is thus proved.
文摘It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the investigation of passenger flow status of different types of subway station on different sections, and analysis of the passenger flow characteristics of pedestrian facilities, such as station channels, stairs and escalators, some suggestions of pedestrian facilities parameters of the station design are put forward.
文摘This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station.
文摘随着城市轨道交通的快速发展,客流量的准确预测对于改善运营服务至关重要。为了解决当前地铁客流预测存在的时空特性挖掘不充分等问题,进一步提高预测的精度与效率,研究了基于动态图神经常微分方程模型(multivariate time series with dynamic graph neural ordinary differential equations,MTGODE)的地铁短时客流预测方法。该方法通彭颢1贺玉过学习地铁站点间的动态关联强度构建动态拓扑图结构,基于学习得到的动态图进行连续图传播以传递时空信息、挖掘客流的依赖关系,并采用残差卷积提取多时间尺度下的周期性模式,实现了对站点间时空动态的连续表征,克服了传统图卷积网络模型难以刻画动态空间依赖的局限性。此外,为了充分挖掘不同站点间客流分布的时空规律,综合利用北京地铁自动售检票系统(auto fare collection,AFC)刷卡数据、天气数据、空气质量数据以及车站周边用地属性数据构建多源融合的客流预测模型。通过选取地铁北京站和积水潭站-东直门站的历史数据开展进站客流和OD客流预测实验,结果表明:与多个基准模型相比,该模型在平均绝对误差、均方根误差和平均百分比误差这3个指标中均取得了更优的预测效果,相较最优基准模型扩散卷积循环神经网络(diffusion convolutional recurrent neural network,DCRNN)分别降低了9.93%,12.30%,9.23%,对地铁客流时空分布的拟合程度更好,模型具有更好的预测精度、稳定性和拟合能力。