In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
Based on the the large shaking table test results on irregular section subway station structure in soft soil,an overall time-history numerical simulation is conducted to study the nonlinear dynamic interaction of the ...Based on the the large shaking table test results on irregular section subway station structure in soft soil,an overall time-history numerical simulation is conducted to study the nonlinear dynamic interaction of the soilirregular underground structure.Typical test results,including the acceleration of the soil,acceleration,and deformation of the structure,were analyzed.Satisfactory consistency between the simulation and test results is verified,and the difference between these results was discussed in detail.The maximum inter-story drift ratio was approximately 1/472 under input PGA=0.54 g.The strain responses of columns were significantly larger than those of the side walls and slabs.The components in the lower layers of the irregular subway station structure,particularly in the central columns,underwent cumulative damage.The research results could provide a simplified analysis method to quantitatively evaluate the damage of irregular underground structures in soft soil.展开更多
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.
基金funding support provided by the National Natural Science Foundation of China(Grant No.51908216)the Program of Major Disciplines,Academic and Technical Leaders of Jiangxi Province(Grant No.20204BCJL23032)+1 种基金Scientific Research Fund of the Institute of Engineering Mechanics,China Earthquake Administration(Grant No.2020D18)Natural Science Foundation of Jiangxi Province(Grant No.S2020QNJJB1234)。
文摘Based on the the large shaking table test results on irregular section subway station structure in soft soil,an overall time-history numerical simulation is conducted to study the nonlinear dynamic interaction of the soilirregular underground structure.Typical test results,including the acceleration of the soil,acceleration,and deformation of the structure,were analyzed.Satisfactory consistency between the simulation and test results is verified,and the difference between these results was discussed in detail.The maximum inter-story drift ratio was approximately 1/472 under input PGA=0.54 g.The strain responses of columns were significantly larger than those of the side walls and slabs.The components in the lower layers of the irregular subway station structure,particularly in the central columns,underwent cumulative damage.The research results could provide a simplified analysis method to quantitatively evaluate the damage of irregular underground structures in soft soil.