With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the imp...With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
基金supported by the Ministry of Science and Technology of P.R.China under grant contracts (No.2010CB428903)the National Natural Science Foundation of China (No.41306112)+3 种基金the National Marine Public Welfare Research Project of China (Nos.201305043,200805069)the Zhejiang Provincial Natural Science Foundation (Nos.LY13D060004,Y5110131)the Marine Science Foundation of State Oceanic Administration for Youth (Nos.2013140,2013144)the Basic Scientific Research Fund of SIO,China (Nos.JG1311,JG1221)
文摘With the rapid development of economy and increase of population in the drainage areas, the nutrient loading has increased dramatically in the Changjiang estuary and adjacent coastal waters. To properly assess the impact of nutrient enrichment on phytoplankton community, seasonal microcosm experiments were conducted during August 2010-July 2011 in the coastal waters of Zhejiang Province. The results of the present study indicated that the chl a concentration, cell abundance, diversity indices, species composition and community succession of the phytoplankton varied significantly with different N/P ratios and seasons. Higher growth was observed in the 64:1 (spring), 32:1 (summer), 16:1 (autumn) and 128:1,256:1 (winter) treatments, respectively. The values of Shannon-Wiener index (H) and Pielou evenness index (J) were lower in the 8:1 and 16:1 treatments in autumn test, while H value was higher in the 128:1 and 8:1 treatments in winter test. A definite community succession order from diatoms to dinoflagel lares was observed in the autumn and winter tests, while the diatoms dominated the community throughout the culture in the spring and summer tests.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
基金Supported by the National Natural Science Foundation of China under Grant No.69896250 (国家自然科学基金) the National High-Tech Research and Development Plan of China under Grant No.2001AA413020 (国家高技术研究发展计划)