To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasona...The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.展开更多
Two kinds of lattice-basis reduction precoding schemes based on successive interference cancellation are proposed.The successive interference cancellation(SIC) structure can be obtained by either orthogonal and a righ...Two kinds of lattice-basis reduction precoding schemes based on successive interference cancellation are proposed.The successive interference cancellation(SIC) structure can be obtained by either orthogonal and a right triangular matrix(QR) decomposition,or the Vertical Bell Labs Layered Space Time(VBLAST) algorithm which provides optimal user ordering.Moreover,the extended channel approach is applied to the proposed SIC-based schemes.Simulation results show that the proposed schemes can achieve comparable BER performance to vector precoding(VP).展开更多
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60832007, 60901018, 60902027)the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z236)
文摘The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.
基金the National Natural Science Founda-tion of China (Nos. 60772100 and 60872017)the National High Technology Research and Development Program (863) of Chinal (No. 2009AA011505)
文摘Two kinds of lattice-basis reduction precoding schemes based on successive interference cancellation are proposed.The successive interference cancellation(SIC) structure can be obtained by either orthogonal and a right triangular matrix(QR) decomposition,or the Vertical Bell Labs Layered Space Time(VBLAST) algorithm which provides optimal user ordering.Moreover,the extended channel approach is applied to the proposed SIC-based schemes.Simulation results show that the proposed schemes can achieve comparable BER performance to vector precoding(VP).