Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should ...Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.展开更多
Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points...Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.展开更多
The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetatio...The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.展开更多
The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetatio...The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China.Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects.Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient <25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient >25°.Species richness, vegetation coverage, important value, and similarity index of community in different layers(Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests.The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B.Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency.Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined.Post-fire 80 years' succession tendency of forest type A is B.platyphylla and Larix gmelinii mixed forest.Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate;whereas, the post-fire 80 years' succession of forest type B is Q.mongolica and B.davurica mixed forest.Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.展开更多
Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, sev...Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.展开更多
This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves it...This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves its own cellular user while the D2D users communicate via a two-way decode-and-forward relay node. Both beamforming(BF) and interference cancellation(IC) strategies at the BS are considered to improve the performance for the cellular link and D2D link, respectively. We first analyze the received signal-to-interference-plus-noise for the cellular link under BF and IC strategies and then derive the exact closed-form expressions for the cellular link. Asymmetric and symmetric cases are discussed for various locations of each user. Finally, the approximations for high signal-to-noise regime are also presented. Numerical results demonstrate the accuracy of the analytical and asymptotic results.展开更多
To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity mu...To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.展开更多
To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62171235 and Grant 62171237in part by the Qinglan Project of Jiangsu Provincein part by the Open Research Foundation of National Mobile Communications Research Laboratory of Southeast University under Grant 2023D01.
文摘Non-orthogonal multiple access(NOMA)is viewed as a key technique to improve the spectrum efficiency and solve the issue of massive connectivity.However,for power domain NOMA,the required overall transmit power should be increased rapidly with the increasing number of users in order to ensure that the signal-to-interference-plus-noise ratio reaches a predefined threshold.In addition,since the successive interference cancellation(SIC)is adopted,the error propagation would become more serious as the order of SIC increases.Aiming at minimizing the total transmit power and satisfying each user’s service requirement,this paper proposes a novel framework with group-based SIC for the deep integration between power domain NOMA and multi-antenna technology.Based on the proposed framework,a joint optimization of power control and equalizer design is investigated to minimize transmit power consumption for uplink multi-antenna NOMA system with error propagations.Based on the relationship between the equalizer and the transmit power coefficients,the original problem is transformed to a transmit power optimization problem,which is further addressed by a parallel iteration algorithm.It is shown by simulations that,in terms of the total power consumption,the proposed scheme outperforms the conventional OMA and the existing cluster-based NOMA schemes.
基金supported by the National Natural Science Foundation of China(62101415)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110757).
文摘Recently cellular networks have been densely and heterogeneously deployed indoors and outdoors to expand the network capacity,and thus the in-building propagation loss and the transmit power diversity of access points will exacerbate link heterogeneity and result in partial unidirectional strong interference.To make full use of the strong interference feature,we propose the successive interference cancellation and alignment(SICA)scheme in the K-user interference channel with partial unidirectional strong interference.SICA is designed to transmit two kinds of data streams simultaneously,the alignment streams and superposition streams.The alignment streams will follow the interference alignment criterion to maintain the optimal degrees of freedom(DoF)performance;the superposition streams are handled via successive interference cancellation at all the strongly interfered receivers to improve the overall achievable rate.The joint transceiver designs for SICA is modeled as a weighted sum rate(WSR)maximization problem,and then can be alternately solved for a local optimum according to the optimality equivalence between WSR and its corresponding weighted mean square error(WMMSE)problem.Simulation results have confirmed the sum rate improvement and DoF optimality of the proposed SICA scheme.
文摘The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China. Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects. Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient 〈25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient 〉25°. Species richness, vegetation coverage, important value, and similarity index of commtmity in different layers (Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests. The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B. Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency. Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined. Post-fire 80 years' succession tendency of forest type A is B. platyphylla and Larix gmelinii mixed forest. Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate; whereas, the post-fire 80 years' succession of forest type B is Q. mongolica and B. davurica mixed forest. Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.
基金supported by Heilongjiang Natural Foundation (C200625)Forestry Science and Technology Sup-porting Program (2006BAD03A0805)
文摘The structure and dynamic succession law of natural secondary forest after severe fire interference in recent 20 years were studied by adopting the method of deducing time series from the spatial sequence of vegetation in Heihe region, Heilongjiang, China.Two typical and widely distributed forest types in the study area, namely forest type A and forest type B, were selected as study subjects.Forest type A is pure broadleaf forest or broadleaf mixed forest mainly composing of superior Betula platyphylla and Populus davidiana in the area with gradient <25°, while forest type B is pure forest or mixed forest composing of superior Quercus mongolica and Betula davurica in the area with gradient >25°.Species richness, vegetation coverage, important value, and similarity index of community in different layers(Herb, shrub, small tree, and arbor layers) were investigated and analyzed for the two typical forests.The results show that after fire interference, the species richness and coverage in each layer in forest type A were higher than that in forest type B.Both for forest type A and B, with elapse of post-fire years, the species richness and coverage of herbs and shrubs showed a decline tendency, while those of arbor layer present a rising tendency.Through comparison of the important values of species in each layer and analysis of community structure changes, the dynamic process of post-fire vegetation succession for forest type A and B was separately determined.Post-fire 80 years' succession tendency of forest type A is B.platyphylla and Larix gmelinii mixed forest.Its shrub layer is mainly composed of Corylus heterophylla and Vaccinium uliginosum, and herb layer is dominated by Carex tristachya, Athyrium multidentatum, and Pyrola incarnate;whereas, the post-fire 80 years' succession of forest type B is Q.mongolica and B.davurica mixed forest.Its shrub layer is mainly composed of lespedeza bicolar and corylus heterophylla and herb layer is dominated by Carex tristachya, Asparagus densiflorus, and Hemerocallis minor.
基金jointly supported by the HongKong,Macao and Taiwan Science & Technology Cooperation Program of China(Grant no.2015DFT10170)the Beijing Higher Education Young Elite Teacher Project
文摘Co-frequency and co-time full duplex(CCFD) is a promising technique for improving spectral efficiency in next generation wireless communication systems. However, for the applications of CCFD in a cellular network, severe co-channel interference is an essential problem. Specifically, there are two significant interferences, i.e., inter-terminal interference(ITI) and inter-cell interference(ICI), which lead to an obvious performance degradation. In this paper, two techniques are proposed for suppressing the ITI and ICI in a CCFD cellular system, respectively. The first technique is obtained by modeling the three-node CCFD system as the Z-channel. After deriving the sum-capacity of the Z-channel, a sum-capacity-achieving scheme based on successive interference cancellation(SIC) is proposed. The second technique is designed by combining the fractional frequency reuse scheme with CCFD. The performance gains of the proposed two techniques in terms of signalto-interference plus noise ratio(SINR) and sumcapacity are analyzed. Simulation results show that the proposed scheme can achieve significant interference suppression performance and higher system capacity, especially for cell edge users.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.61701201)the Natural Science Foundation of Jiangsu Province(No.BK20170758,BK20170757)+1 种基金the Natural Science Foundation for colleges and universities of Jiangsu Province(No.17KJB510011)Project of Key Laboratory of Wireless Communications of Jiangsu Province
文摘This paper investigates the device-to-device(D2D) communication underlaying cellular network assisted by a two-way decode-and-forward relay node. We assume the base station(BS) is equipped with M-antenna and serves its own cellular user while the D2D users communicate via a two-way decode-and-forward relay node. Both beamforming(BF) and interference cancellation(IC) strategies at the BS are considered to improve the performance for the cellular link and D2D link, respectively. We first analyze the received signal-to-interference-plus-noise for the cellular link under BF and IC strategies and then derive the exact closed-form expressions for the cellular link. Asymmetric and symmetric cases are discussed for various locations of each user. Finally, the approximations for high signal-to-noise regime are also presented. Numerical results demonstrate the accuracy of the analytical and asymptotic results.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)Postdoctoral Science-Research Foundation of Heilongjiang (Grant No. LBH-Q11108)the National Natural Science Foundation of China (61071104)
文摘To improve the spectrum efficiency, this paper considers the multiuser detection with the MU-MIMO technology for multiuser MIMO-OFDM system uplink with the same subcarrier shared by multiple users. A low complexity multiuser detection algorithm with recursively successive zero-forcing and successive interference cancellation(RSZF-SIC) based on nullspace is proposed. The RSZF process based on the block diagonalization(BD) technique eliminates the co-channel interference(CCI) by a recursive method based on the nullspace orthogonal theorem. The SIC process detects the user signals respectively with the reasonable user detection sequence based on the results of the RSZF process. The computational complexity of the proposed algorithm is effectively reduced by reducing the total number of singular value decomposition(SVD) operations and the dimension of the SVD matrix in the recursive procedure. The performance of the proposed algorithm is improved in terms of bit error rate and sum capacity of the system, especially in the highSNR regime.
文摘采用自主水下航行器(Autonomous Underwater Vehicle,AUV)磁测平台可开展海洋地磁场测量、水下磁性目标探测和识别等工作,AUV磁测平台具有广阔的应用前景,但目前AUV载体磁干扰补偿技术研究尚不成熟,制约着水下航行器测磁精度。基于磁测平台抗磁干扰基本原理,提出一种基于线性种群规模缩减和成功历史的参数自适应差分进化(Success History-based Adaptive Differential Evolution with Linear Population Size Reduction,L-SHADE)算法的AUV载体磁干扰参数辨识的数值模拟方法。用磁偶极子和旋转椭球壳混合模型来等效模拟AUV载体磁干扰,通过模拟航行获得多组磁测数据,据此建立磁干扰参数辨识模型,并采用L-SHADE算法求解。通过数值模拟实验定量分析研究磁测平台测磁精度随磁传感器、平台姿态及航向等误差的传播规律。研究结果表明:当磁传感器测量精度为10 nT、姿态测量精度为0.01°、航向测量精度为0.1°时,测磁误差可小于100 nT。设计的AUV磁测平台抗干扰试验表明,地磁场总量最大相对误差为1.07%。
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.