Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the random...Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefmite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.展开更多
A successive quadratic programming algorithm for solving SDP relaxation of Max- Bisection is provided and its convergence result is given. The step-size in the algorithm is obtained by solving n easy quadratic equatio...A successive quadratic programming algorithm for solving SDP relaxation of Max- Bisection is provided and its convergence result is given. The step-size in the algorithm is obtained by solving n easy quadratic equations without using the linear search technique. The numerical experiments show that this algorithm is rather faster than the interior-point method.展开更多
The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is present...The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.展开更多
This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is mon...This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is monotonically increasing. The search directions only depend on solving one quadratic proraming and its simple correction, its line search is simple straight search and does not depend on any penalty function. Under suit assumptions, the algorithm is proved to possess global and superlinear convergence.展开更多
文摘Based on the semidefinite programming relaxation of the CDMA maximum likelihood multiuser detection problem, a detection strategy by the successive quadratic programming algorithm is presented. Coupled with the randomized cut generation scheme, the suboptimal solution of the multiuser detection problem in obtained. Compared to the interior point methods previously reported based on semidefmite programming, simulations demonstrate that the successive quadratic programming algorithm often yields the similar BER performances of the multiuser detection problem. But the average CPU time of this approach is significantly reduced.
文摘A successive quadratic programming algorithm for solving SDP relaxation of Max- Bisection is provided and its convergence result is given. The step-size in the algorithm is obtained by solving n easy quadratic equations without using the linear search technique. The numerical experiments show that this algorithm is rather faster than the interior-point method.
文摘The main difficulties encountered in the successive quadratic programming methods are.the choice of penalty parameter, the choice of steplenth, and the Maratos effect. An algorithmwithout penalty parameters is presented in this paper. The choice of steplength parameters isbased on the method of trust region. Global convergence and local superlinear convergence areproved under suitable assumption.
文摘This paper presents a strong subfeasible directions algorithm possessing superlinear convergence for inequality constrained optimization. The starting point of this algorithm may be arbitary and its feasibility is monotonically increasing. The search directions only depend on solving one quadratic proraming and its simple correction, its line search is simple straight search and does not depend on any penalty function. Under suit assumptions, the algorithm is proved to possess global and superlinear convergence.