Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, th...Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, the differences in the expression levels of 3 invertase genes, CWI, SAI and NI, between virus- free and ordinary sugarcane seedlings were analyzed. Compared with ordinary sugarcane plants, the expression of CWI was mainly up-regulated in immature leaves and stems at elongation stage and leaves and immature internodes at maturation stage, and especially, greatly up-regulated in immature interuedes at maturation stage of virus-free plants. The expression of SAI and NI were mainly up-regnlated in leaves and immature internedes of virus-free plants at maturation stage, which might be beneficial to sugar accumulation and rapid utilization of monosaccharide in the stalks of virus-free plants. It is further indicated that virus-free treatment could significantly improve the expression of sucrose invertases at late growth period, and might facilitate the increase of plant biomass.展开更多
Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re...Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.展开更多
基金Supported by"863"Program(2013AA102604-1)Natural Science Foundation of Hainan Province(20163124)+1 种基金Basal Research Fund for Central Public-interest Scientific Institute(ITBB140503)Earmarked Fund for China Agriculture Research System(CARS-20-2-5)
文摘Virus-free sugarcane seedlings have improved biomass and sucrose content compared with ordinary seedlings, and sucrose invertases are key enzymes regulating sugarcane growth and sucrose accumulation. In this study, the differences in the expression levels of 3 invertase genes, CWI, SAI and NI, between virus- free and ordinary sugarcane seedlings were analyzed. Compared with ordinary sugarcane plants, the expression of CWI was mainly up-regulated in immature leaves and stems at elongation stage and leaves and immature internodes at maturation stage, and especially, greatly up-regulated in immature interuedes at maturation stage of virus-free plants. The expression of SAI and NI were mainly up-regnlated in leaves and immature internedes of virus-free plants at maturation stage, which might be beneficial to sugar accumulation and rapid utilization of monosaccharide in the stalks of virus-free plants. It is further indicated that virus-free treatment could significantly improve the expression of sucrose invertases at late growth period, and might facilitate the increase of plant biomass.
文摘Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.