Sucrose synthases(SUS) are a family of enzymes that play pivotal roles in carbon partitioning, sink strength and plant development. A total of 11 SUS genes have been identified in the genome of Malus domestica(Md SUSs...Sucrose synthases(SUS) are a family of enzymes that play pivotal roles in carbon partitioning, sink strength and plant development. A total of 11 SUS genes have been identified in the genome of Malus domestica(Md SUSs), and phylogenetic analysis revealed that the Md SUS genes were divided into three groups, named as SUS I, SUS II and SUS III, respectively. The SUS I and SUS III groups included four homologs each, whereas the SUS II group contained three homologs. SUS genes in the same group showed similar structural characteristics, such as exon number, size and length distribution. After assessing four different tissues, Md SUS1 s and Md SUS2.1 showed the highest expression in fruit, whereas Md SUS2.2/2.3 and Md SUS3 s exhibit the highest expression in shoot tips. Most Md SUSs showed decreased expression during fruit development, similar to SUS enzyme activity, but both Md SUS2.1 and Md SUS1.4 displayed opposite expression profiles. These results suggest that different Md SUS genes might play distinct roles in the sink-source sugar cycle and sugar utilization in apple sink tissues.展开更多
Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and...Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.However,studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.In the present study,a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.The gene structures and their promoter cis-elements,protein conserved motifs,subcellular localizations,physiological functions and biochemical properties were analyzed.A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication(WGD)and segmental duplication played vital roles in MdSPS gene family expansion.The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.Furthermore,three SPS gene subfamilies were classified based on phylogenetic relationships,and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.In addition,a major gene related to sucrose accumulation(MdSPSA2.3)was identified according to the highly consistent trends in the changes of its expression in four apple varieties(‘Golden Delicious’,‘Fuji’,‘Qinguan’and‘Honeycrisp’)and the correlation between gene expression and soluble sugar content during fruit development.Furthermore,the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.展开更多
Sucrose synthase(SUS,EC 2.4.1.13)is widely considered as a key enzyme involved in plant sucrose metabolism,and the gene family encoding different SUS isozymes has been identified and characterized in several plant spe...Sucrose synthase(SUS,EC 2.4.1.13)is widely considered as a key enzyme involved in plant sucrose metabolism,and the gene family encoding different SUS isozymes has been identified and characterized in several plant species.However,to date scant information about the SUS genes is available in Litchi chinensis Sonn.Here,we identified five SUS genes in litchi.These Lc SUSs shared high levels of similarity in both nucleotide and amino acid sequences.Their gene structure,phylogenetic relationships,and expression profiles were characterized.Gene structure analysis indicated that the Lc SUSs have similar exon-intron structures.Phylogenetic analysis revealed that the five members could be classified into three groups(LcSUS1 and LcSUS2 in SUSⅡ,LcSUS4 and LcSUS5 in SUSⅢ,and LcSUS3 in SUSⅠ),demonstrating evolutionary conservation in the SUS family across litchi and other plant species.The expression levels of Lc SUSs were investigated via real-time PCR in various tissues and different developmental stages of aril.For tissues and organs,Lc SUSs exhibited distinct but partially redundant expression profiles in litchi,being predominantly expressed in young leaves(sink).During aril development,the expression pattern of LcSUS1 was consistent with the trend of sugar accumulation,indicating it may play important roles in determination of sink strength in aril.Moreover,transcript levels of LcSUS2,LcSUS4,and LcSUS5 varied between cultivars with different hexose/sucrose ratios,which may regulate the sugar composition in aril.Our results provide insights into physiological functions of SUS genes in litchi,especially roles in regulating sugar accumulation in aril.展开更多
In plants, sucrose synthase (SUS) enzymes catalyze conversion of sucrose into fructose and UDP-glucose in the presence of UDP. To investigate the impact of overexpression of heterologous SUS on the growth and developm...In plants, sucrose synthase (SUS) enzymes catalyze conversion of sucrose into fructose and UDP-glucose in the presence of UDP. To investigate the impact of overexpression of heterologous SUS on the growth and development of Arabidopsis, we transformed Arabidopsis plants with an overexpression vector containing an aspen SUS gene (PtrSUS1). The genomic PCR confirmed the successful integration of PtrSUS1 transgene in the Arabidopsis genome. PtrSUS1 expression in transgenic Arabidopsis plants was confirmed by RT-PCR. The SUS activity was dramatically increased in all transgenic lines examined. The three selected transgenic PtrSUS1 lines exhibited faster growth and flowered about 10 days earlier compared to untransformed controls, and also possessed 133%, 139%, and 143% SUS activity compared to controls. Both fresh weights and dry biomass yields of the whole plants from these three selected transgenic lines were significantly increased to 125% of the controls. Transgenic PtrSUS1 lines also had a higher tolerance to higher concentration of sucrose which was reflective of the increased SUS activity in transgenic versus wild-type plants. The growth differences between wild-type and transgenic plants, either in root and hypocotyl length or in fresh and dry weight of whole plant, became more pronounced on the media containing higher sucrose concentrations. Taken together, these results showed that the early flowering, faster growth and increased tolerance to higher sucrose in transgenic lines were caused by the genome integration and constitutive expression of the aspen PtrSUS1 gene in transgenic Arabidopsis.展开更多
The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet ...The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet were studied in the field experiment by nutrient solution culture. The results showed that SS activity in leaves was lower than that in roots. With nitrogen level increasing, SS decomposition activity enhanced, and synthesis activity reduced. SS activity was regulated by different nitrogen forms and the ratio of NO3 and NH4^+. SS synthesis activity was enhanced as NH4^+ increasing when NO3 : NH4^+≥ 1, and it decreased as increasing NH4^+ when NO3 : NH4^+≤ 1, and it was the highest when NO3 : NH4^+=1. SS decomposition activity was enhanced as NO3- increasing. Sucrose content in root was lowed as nitrogen level increasing, but it was enhanced as NH4^+ increasing in the same nitrogen level. Root and sugar yield were the highest in the medium nitrogen level and NO3 : NH4^+=1. The result in field experiment corresponded with that in the nutrient fluid culture. It provides a basis for using reasonably nitrogen fertilizer in sugar beet production.展开更多
Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natura...Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natural and high temperatures by using two japonica rice varieties Koshihikari and Sasanishiki. In rice grains, the sucrose synthase activity was higher than that of invertase, which was significantly correlated with starch accumulation rate, indicating that the sucrose synthase played an important role in sucrose degradation and starch synthesis. Under high temperature, the significant increase in grain sucrose content without any increase in fructose and glucose contents, suggested that the high temperature treatment enhanced sucrose accumulation, while diminished sucrose degradation in rice grains. Compared with the control plants, the decrease in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase with high temperature treated plants indicated that the deceleration of sucrose-degradation was related to the decrease in activities of sucrose synthase and invertase.展开更多
The formation of mature and fertile pollen grains, taking place inside the anther, depends on supply of assimilates, in the form of sucrose, provided mainly by the leaves. Data is limited, however, with respect to the...The formation of mature and fertile pollen grains, taking place inside the anther, depends on supply of assimilates, in the form of sucrose, provided mainly by the leaves. Data is limited, however, with respect to the understanding of sucrose metabolism in microspores and the supporting tissues. The aims of the present work were to 1) follow the changes in total and relative concentrations of sucrose, glucose, fructose and starch in the stamen parts and microspores up until anthesis, 2) follow the activities of sucrose-metabolism-related enzymes, in the anther walls fraction and microspores of the crop plant tomato. Sucrose was found to be partially cleaved in the filament, decreasing by more than twofold in the anther wall layers and the locular fluid, and to accumulate in the mature pollen grains, constituting 80% of total soluble sugars. Thus, sucrose was both the starting sugar, supporting microspore development, and the main carbohydrate accumulated at the end of the pollen-development program. The major invertase found to be active in both the anther wall layers and in maturing microspores was cell-wall-bound invertase. High fructokinase 2 and sucrose phosphate synthase activities during pollen maturation coincided with sucrose accumulation. The potential importance of sucrose accumulation during pollen dehydration phase and germination is discussed.展开更多
Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re...Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.展开更多
Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains e...Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.展开更多
In this paper,the effect of different concentrations of sucrose stress on color formation of the Staphylococcus xylosus was investigated.The results showed that the highest a*value and the best coloring effect similar...In this paper,the effect of different concentrations of sucrose stress on color formation of the Staphylococcus xylosus was investigated.The results showed that the highest a*value and the best coloring effect similar to those of nitrite were observed after the addition of 0.05 g/mL sucrose to stress the S.xylosus.UV-Vis and electron spin resonance spectra analysis showed that production of coloring product Mb-NO was significantly enhanced after 0.05 g/mL sucrose stress.The growth curve,reactive oxygen content,cell cycle,nitric oxide synthase(NOS)activity,zeta potential,cell size,and protein composition of S.xylosus were investigated to reveal the mechanism of sucrose stress to enhance the coloring effect of the strain.The result showed that sucrose inhibited the growth of S.xylosus,which changed the physiological state by activating the oxidative stress response.The stress altered the rate of intracellular metabolism of S.xylosus by delaying the cell cycle and increasing cell surface zeta potential and cell particle size.These changes altered the protein composition of the cells and significantly enhanced the activity of intracellular NOS,which could improve the chromogenic ability of S.xylosus.This study will provide theoretical support for sucrose stress on S.xylosus to enhance its coloring effect,and sucrose stress for S.xylosus might be a promising biological alternative to nitrite in meat products.展开更多
基金supported in part by the National Natural Science Foundation of China (31372038)the Natural Basic Research Plan in Shaanxi Province of China (2015JQ3082)
文摘Sucrose synthases(SUS) are a family of enzymes that play pivotal roles in carbon partitioning, sink strength and plant development. A total of 11 SUS genes have been identified in the genome of Malus domestica(Md SUSs), and phylogenetic analysis revealed that the Md SUS genes were divided into three groups, named as SUS I, SUS II and SUS III, respectively. The SUS I and SUS III groups included four homologs each, whereas the SUS II group contained three homologs. SUS genes in the same group showed similar structural characteristics, such as exon number, size and length distribution. After assessing four different tissues, Md SUS1 s and Md SUS2.1 showed the highest expression in fruit, whereas Md SUS2.2/2.3 and Md SUS3 s exhibit the highest expression in shoot tips. Most Md SUSs showed decreased expression during fruit development, similar to SUS enzyme activity, but both Md SUS2.1 and Md SUS1.4 displayed opposite expression profiles. These results suggest that different Md SUS genes might play distinct roles in the sink-source sugar cycle and sugar utilization in apple sink tissues.
基金supported by the National Natural Science Foundation of China (32172521)the Excellent Youth Science Foundation of Heilongjiang Province,China (YQ2023C006)+1 种基金the Talent Introduction Program of Northeast Agricultural University of Chinathe Collaborative Innovation System of the Agricultural Bio-economy in Heilongjiang Province,China
文摘Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.However,studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.In the present study,a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.The gene structures and their promoter cis-elements,protein conserved motifs,subcellular localizations,physiological functions and biochemical properties were analyzed.A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication(WGD)and segmental duplication played vital roles in MdSPS gene family expansion.The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.Furthermore,three SPS gene subfamilies were classified based on phylogenetic relationships,and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.In addition,a major gene related to sucrose accumulation(MdSPSA2.3)was identified according to the highly consistent trends in the changes of its expression in four apple varieties(‘Golden Delicious’,‘Fuji’,‘Qinguan’and‘Honeycrisp’)and the correlation between gene expression and soluble sugar content during fruit development.Furthermore,the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.
基金the Key-Area of Research and Development Program of Guangdong Province(Grant No.2018B020202011)the China Litchi and Longan Industry Technology Research System(Grant No.CARS-32-05)Yang Fan Innovative&Entrepreneurial Research Team Project(Grant No.2014YT02H013)。
文摘Sucrose synthase(SUS,EC 2.4.1.13)is widely considered as a key enzyme involved in plant sucrose metabolism,and the gene family encoding different SUS isozymes has been identified and characterized in several plant species.However,to date scant information about the SUS genes is available in Litchi chinensis Sonn.Here,we identified five SUS genes in litchi.These Lc SUSs shared high levels of similarity in both nucleotide and amino acid sequences.Their gene structure,phylogenetic relationships,and expression profiles were characterized.Gene structure analysis indicated that the Lc SUSs have similar exon-intron structures.Phylogenetic analysis revealed that the five members could be classified into three groups(LcSUS1 and LcSUS2 in SUSⅡ,LcSUS4 and LcSUS5 in SUSⅢ,and LcSUS3 in SUSⅠ),demonstrating evolutionary conservation in the SUS family across litchi and other plant species.The expression levels of Lc SUSs were investigated via real-time PCR in various tissues and different developmental stages of aril.For tissues and organs,Lc SUSs exhibited distinct but partially redundant expression profiles in litchi,being predominantly expressed in young leaves(sink).During aril development,the expression pattern of LcSUS1 was consistent with the trend of sugar accumulation,indicating it may play important roles in determination of sink strength in aril.Moreover,transcript levels of LcSUS2,LcSUS4,and LcSUS5 varied between cultivars with different hexose/sucrose ratios,which may regulate the sugar composition in aril.Our results provide insights into physiological functions of SUS genes in litchi,especially roles in regulating sugar accumulation in aril.
文摘In plants, sucrose synthase (SUS) enzymes catalyze conversion of sucrose into fructose and UDP-glucose in the presence of UDP. To investigate the impact of overexpression of heterologous SUS on the growth and development of Arabidopsis, we transformed Arabidopsis plants with an overexpression vector containing an aspen SUS gene (PtrSUS1). The genomic PCR confirmed the successful integration of PtrSUS1 transgene in the Arabidopsis genome. PtrSUS1 expression in transgenic Arabidopsis plants was confirmed by RT-PCR. The SUS activity was dramatically increased in all transgenic lines examined. The three selected transgenic PtrSUS1 lines exhibited faster growth and flowered about 10 days earlier compared to untransformed controls, and also possessed 133%, 139%, and 143% SUS activity compared to controls. Both fresh weights and dry biomass yields of the whole plants from these three selected transgenic lines were significantly increased to 125% of the controls. Transgenic PtrSUS1 lines also had a higher tolerance to higher concentration of sucrose which was reflective of the increased SUS activity in transgenic versus wild-type plants. The growth differences between wild-type and transgenic plants, either in root and hypocotyl length or in fresh and dry weight of whole plant, became more pronounced on the media containing higher sucrose concentrations. Taken together, these results showed that the early flowering, faster growth and increased tolerance to higher sucrose in transgenic lines were caused by the genome integration and constitutive expression of the aspen PtrSUS1 gene in transgenic Arabidopsis.
基金Supported by National Natural Science Fund (30671229)
文摘The content of sugar is influenced by sucrose synthase (SS) activity in roots. The effects of nitrogen level in the aminonitrate ratio on SS activity of leaves and roots, roots yield and sugar content in sugar beet were studied in the field experiment by nutrient solution culture. The results showed that SS activity in leaves was lower than that in roots. With nitrogen level increasing, SS decomposition activity enhanced, and synthesis activity reduced. SS activity was regulated by different nitrogen forms and the ratio of NO3 and NH4^+. SS synthesis activity was enhanced as NH4^+ increasing when NO3 : NH4^+≥ 1, and it decreased as increasing NH4^+ when NO3 : NH4^+≤ 1, and it was the highest when NO3 : NH4^+=1. SS decomposition activity was enhanced as NO3- increasing. Sucrose content in root was lowed as nitrogen level increasing, but it was enhanced as NH4^+ increasing in the same nitrogen level. Root and sugar yield were the highest in the medium nitrogen level and NO3 : NH4^+=1. The result in field experiment corresponded with that in the nutrient fluid culture. It provides a basis for using reasonably nitrogen fertilizer in sugar beet production.
文摘Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natural and high temperatures by using two japonica rice varieties Koshihikari and Sasanishiki. In rice grains, the sucrose synthase activity was higher than that of invertase, which was significantly correlated with starch accumulation rate, indicating that the sucrose synthase played an important role in sucrose degradation and starch synthesis. Under high temperature, the significant increase in grain sucrose content without any increase in fructose and glucose contents, suggested that the high temperature treatment enhanced sucrose accumulation, while diminished sucrose degradation in rice grains. Compared with the control plants, the decrease in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase with high temperature treated plants indicated that the deceleration of sucrose-degradation was related to the decrease in activities of sucrose synthase and invertase.
文摘The formation of mature and fertile pollen grains, taking place inside the anther, depends on supply of assimilates, in the form of sucrose, provided mainly by the leaves. Data is limited, however, with respect to the understanding of sucrose metabolism in microspores and the supporting tissues. The aims of the present work were to 1) follow the changes in total and relative concentrations of sucrose, glucose, fructose and starch in the stamen parts and microspores up until anthesis, 2) follow the activities of sucrose-metabolism-related enzymes, in the anther walls fraction and microspores of the crop plant tomato. Sucrose was found to be partially cleaved in the filament, decreasing by more than twofold in the anther wall layers and the locular fluid, and to accumulate in the mature pollen grains, constituting 80% of total soluble sugars. Thus, sucrose was both the starting sugar, supporting microspore development, and the main carbohydrate accumulated at the end of the pollen-development program. The major invertase found to be active in both the anther wall layers and in maturing microspores was cell-wall-bound invertase. High fructokinase 2 and sucrose phosphate synthase activities during pollen maturation coincided with sucrose accumulation. The potential importance of sucrose accumulation during pollen dehydration phase and germination is discussed.
文摘Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.
文摘Sucrose synthase (Sus) is a key enzyme in the breakdown of sucrose and is considered a biochemical marker for sink strength, especially in crop species, based on mutational and gene suppression studies. It remains elusive, however, whether, or to what extent, increase in Sus activity may enhance sink development. We aimed to address this question by expressing a potato Sus gene in cotton where Sus expression has been previously shown to be critical for normal seed and fiber development. Segregation analyses at T1 generation followed by studies in homozygous progeny lines revealed that increased Sus activity in cotton (1) enhanced leaf expansion with the effect evident from young leaves emerging from shoot apex; (2) improved early seed development, which reduced seed abortion, hence enhanced seed set, and (3) promoted fiber elongation. In young leaves of Sus overexpressing lines, fructose concentrations were significantly increased whereas, in elongating fibers, both fructose and glucose levels were increased. Since hexoses contribute little to osmolality in leaves, in contrast to developing fibers, it is concluded that high Sus activity promotes leaf development independently of osmotic regulation, probably through sugar signaling. The analyses also showed that doubling the Sus activity in 0-d cotton seeds increased their fresh weight by about 30%. However, further increase in Sus activity did not lead to any further increase in seed weight, indicating an upper limit for the Sus overexpression effect. Finally, based on the observed additive effect on fiber yield from increased fiber length and seed number, a new strategy is proposed to increase cotton fiber yield by improving seed development as a whole, rather than solely focusing on manipulating fiber growth.
基金the National Natural Science Foundation of China(No.31501512)。
文摘In this paper,the effect of different concentrations of sucrose stress on color formation of the Staphylococcus xylosus was investigated.The results showed that the highest a*value and the best coloring effect similar to those of nitrite were observed after the addition of 0.05 g/mL sucrose to stress the S.xylosus.UV-Vis and electron spin resonance spectra analysis showed that production of coloring product Mb-NO was significantly enhanced after 0.05 g/mL sucrose stress.The growth curve,reactive oxygen content,cell cycle,nitric oxide synthase(NOS)activity,zeta potential,cell size,and protein composition of S.xylosus were investigated to reveal the mechanism of sucrose stress to enhance the coloring effect of the strain.The result showed that sucrose inhibited the growth of S.xylosus,which changed the physiological state by activating the oxidative stress response.The stress altered the rate of intracellular metabolism of S.xylosus by delaying the cell cycle and increasing cell surface zeta potential and cell particle size.These changes altered the protein composition of the cells and significantly enhanced the activity of intracellular NOS,which could improve the chromogenic ability of S.xylosus.This study will provide theoretical support for sucrose stress on S.xylosus to enhance its coloring effect,and sucrose stress for S.xylosus might be a promising biological alternative to nitrite in meat products.