The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suctio...The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suction in presence of a transverse magnetic field is considered. Perturbation technique is obtained the solution for velocity field and concentration distribution analytically. The effects of the flow parameters on the velocity field and concentration distribution are presented with the aid of figures. Also, the skin friction and the rate of mass transfer are calculated with the aid of tables.展开更多
The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant...The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.展开更多
A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently so...A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.展开更多
The unsteady flow of a Casson fluid and heat transfer over a stretching surface in presence of suction/blowing are investigated. The transformed equations are solved numerically by using the shooting method. The exact...The unsteady flow of a Casson fluid and heat transfer over a stretching surface in presence of suction/blowing are investigated. The transformed equations are solved numerically by using the shooting method. The exact solution corre- sponding to the momentum equation for the steady case is obtained. Fluid velocity initially decreases with the increase of unsteadiness parameter. Due to an increasing Casson parameter the velocity field is suppressed. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.展开更多
Radiation absorption and chemical reaction effects on unsteady MHD free convective flow of a viscoelastic fluid past a vertical porous plate in the presence of variable suction and heat source is considered. A uniform...Radiation absorption and chemical reaction effects on unsteady MHD free convective flow of a viscoelastic fluid past a vertical porous plate in the presence of variable suction and heat source is considered. A uniform magnetic field is assumed to be applied in the transverse direction of the flow. The set of non-linear partial differential equations is transformed into a set of ordinary differential equations by super imposing a solution with steady and unsteady part. The set of ordinary differential equations is solved by using regular perturbation scheme. The expressions for velocity, temperature and species concentration fields are obtained and the expressions for Skin friction, Nusselt number and Sherwood number are also derived. The effects of numerous physical parameters on the above flow quantities are studied with the help of graphs and tables.展开更多
The group-theorytic approach is applied for solving the problem of the unsteady MHD mixed convective flow past on a moving curved surface. The application of two-parameter groups reduces the number of independent vari...The group-theorytic approach is applied for solving the problem of the unsteady MHD mixed convective flow past on a moving curved surface. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effects of varying parameters governing the problem are studied. A comparison with previous work is presented.展开更多
A numerical investigation is carried out on the effects of heat source suction and viscous dissipation on Magneto hydrodynamics boundary layer flow of a viscous, steady and incompressible fluid. The flow is assumed to...A numerical investigation is carried out on the effects of heat source suction and viscous dissipation on Magneto hydrodynamics boundary layer flow of a viscous, steady and incompressible fluid. The flow is assumed to be over on exponentially stretching sheet. The governing system of partial differential equations has been transformed into ordinary differential equation using similarity transformation. Keller box method is simulated on the dimensionless system of differential equations. The skin friction coefficient and the heat and mass transfer rates are very significant parameters that are computed, analysed discussed in detail.展开更多
文摘The model of mass transfer on free convective flow of a viscous incompressible electrically conducting fluid past vertically porous plate through a porous medium with time dependant permeability and oscillatory suction in presence of a transverse magnetic field is considered. Perturbation technique is obtained the solution for velocity field and concentration distribution analytically. The effects of the flow parameters on the velocity field and concentration distribution are presented with the aid of figures. Also, the skin friction and the rate of mass transfer are calculated with the aid of tables.
文摘The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.
基金Foundation item:the Natural Science Foundation of Jiangsu Province(BK97056109)
文摘A vorticity-velocity method was used to study the incompressible viscous fluid flow around a circular cylinder with surface suction or blowing. The resulted high order implicit difference equations were effeciently solved by the modified incomplete LU decomposition conjugate gradient scheme ( MILU-CG). The effects of surface suction or blowing' s position and strength on the vortex structures in the cylinder wake, as well as on the drag and lift forces at Reynoldes number Re = 100 were investigated numerically. The results show that the suction on the shoulder of the cylinder or the blowing on the rear of the cylinder can effeciently suppress the asymmetry of the vortex wake in the transverse direction and greatly reduce the lift force; the suction on the shoulder of the cylinder, when its strength is properly chosen, can reduce the drag force significantly, too.
基金Project supported by the Special Assistance Program,DSA Phase-1,UGC,New Delhi,India
文摘The unsteady flow of a Casson fluid and heat transfer over a stretching surface in presence of suction/blowing are investigated. The transformed equations are solved numerically by using the shooting method. The exact solution corre- sponding to the momentum equation for the steady case is obtained. Fluid velocity initially decreases with the increase of unsteadiness parameter. Due to an increasing Casson parameter the velocity field is suppressed. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.
文摘Radiation absorption and chemical reaction effects on unsteady MHD free convective flow of a viscoelastic fluid past a vertical porous plate in the presence of variable suction and heat source is considered. A uniform magnetic field is assumed to be applied in the transverse direction of the flow. The set of non-linear partial differential equations is transformed into a set of ordinary differential equations by super imposing a solution with steady and unsteady part. The set of ordinary differential equations is solved by using regular perturbation scheme. The expressions for velocity, temperature and species concentration fields are obtained and the expressions for Skin friction, Nusselt number and Sherwood number are also derived. The effects of numerous physical parameters on the above flow quantities are studied with the help of graphs and tables.
文摘The group-theorytic approach is applied for solving the problem of the unsteady MHD mixed convective flow past on a moving curved surface. The application of two-parameter groups reduces the number of independent variables by two, and consequently the system of governing partial differential equations with boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The obtained ordinary differential equations are solved numerically using the shooting method. The effects of varying parameters governing the problem are studied. A comparison with previous work is presented.
文摘A numerical investigation is carried out on the effects of heat source suction and viscous dissipation on Magneto hydrodynamics boundary layer flow of a viscous, steady and incompressible fluid. The flow is assumed to be over on exponentially stretching sheet. The governing system of partial differential equations has been transformed into ordinary differential equation using similarity transformation. Keller box method is simulated on the dimensionless system of differential equations. The skin friction coefficient and the heat and mass transfer rates are very significant parameters that are computed, analysed discussed in detail.