Subsurface water flow above the weakly permeable soil layer commonly occurs on purple soil slopes.However,it remains difficult to quantify the effect of subsurface water flow on the surface flow velocity.Laboratory ex...Subsurface water flow above the weakly permeable soil layer commonly occurs on purple soil slopes.However,it remains difficult to quantify the effect of subsurface water flow on the surface flow velocity.Laboratory experiments were performed to measure the rill flow velocity on purple soil slopes containing a subsurface water flow layer with the electrolyte tracer method considering 3 subsurface water flow depths(SWFDs:5,10,and 15 cm),3 flow rates(FRs:2,4,and 8 L min^(-1)),and 4 slope gradients(SGs:5°,10°,15°,and 20°).As a result,the pulse boundary model fit the electrolyte transport processes very well under the different SWFDs.The measured rill flow velocities were 0.202 to 0.610 m s^(-1) under the various SWFDs.Stepwise regression results indicated a positive dependence of the flow velocity on the FR and SG but a negative dependence on the SWFD.The SWFD had notable effects on the rill flow velocity.Decreasing the SWFD from 15 to 5 cm increased the flow velocity.Moreover,the flow velocities under the 10-and 15-cm SWFDs were 89%and 86%,respectively,of that under the 5-cm SWFD.The flow velocity under the 5-,10-and 15-cm SWFDs was decreased to 89%,80%,and 77%,respectively,of that on saturated soil slopes.The results will enhance the understanding of rill flow hydrological processes under SWFD impact.展开更多
As an extreme manifestation of environmental degradation,karst rock desertification is caused by soil loss and rock exposure.In some areas with serious rocky desertification,there is no soil to be eroded or leaked.The...As an extreme manifestation of environmental degradation,karst rock desertification is caused by soil loss and rock exposure.In some areas with serious rocky desertification,there is no soil to be eroded or leaked.The soil loss in these areas superimposes soil erosion and unique subsurface loss by soil leakage through fissures,pipelines,sinkholes,etc.,which directly reduce soil resources and accelerate rocky desertification.However,the factors driving soil erosion and subsurface loss by soil leakage are still unclear.Rainfall experiments were conducted on simulated slopes with surface-exposed bedrock and subsurface fissures based on field investigations in a karst rocky desertification area of Guizhou Province,China.Four factors,including rainfall intensity,slope gradient,bedrock exposure rate and subsurface fissure degree,were considered in the experiment.We found that the amount of soil surface erosion and subsurface leakage loss is driven not only by the runoff volume but also by other influential factors.Rainfall intensity is the driving factor determining the amount of surface erosion and subsurface leakage loss of soil and water and the relationship between them.The slope gradient plays a leading role only in subsurface fissure flow leakage loss.The bedrock exposure rate drives the surface soil erosion rate,shows a critical value(30%),and dominates the fissure flow leakage loss rate.Subsurface fissure density plays an important role in the surface loss of soil and water;however,an increase in the subsurface fissure density does not obviously accelerate the subsurface leakage loss of soil and water.Although this result,obtained from laboratory simulations,may differ at the field scale or larger,it could provide a foundation for systematic studies on soil erosion/leakage and insights into the relations between rocky desertification and soil erosion/leakage and their driving factors in karst rocky desertification.展开更多
This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contamina...This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed. The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration. The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model. Contaminant transport in the integrated surface and subsurface domains is simulated using advection-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change. The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricultural watersheds with shallow streams.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.41571265 and 42177314)the Key Research and Development Project of Social Livelihood in Chongqing(cstc2018jscx-mszd X0061)the Foundation of Graduate Research and Innovation in Chongqing(CYS21114)。
文摘Subsurface water flow above the weakly permeable soil layer commonly occurs on purple soil slopes.However,it remains difficult to quantify the effect of subsurface water flow on the surface flow velocity.Laboratory experiments were performed to measure the rill flow velocity on purple soil slopes containing a subsurface water flow layer with the electrolyte tracer method considering 3 subsurface water flow depths(SWFDs:5,10,and 15 cm),3 flow rates(FRs:2,4,and 8 L min^(-1)),and 4 slope gradients(SGs:5°,10°,15°,and 20°).As a result,the pulse boundary model fit the electrolyte transport processes very well under the different SWFDs.The measured rill flow velocities were 0.202 to 0.610 m s^(-1) under the various SWFDs.Stepwise regression results indicated a positive dependence of the flow velocity on the FR and SG but a negative dependence on the SWFD.The SWFD had notable effects on the rill flow velocity.Decreasing the SWFD from 15 to 5 cm increased the flow velocity.Moreover,the flow velocities under the 10-and 15-cm SWFDs were 89%and 86%,respectively,of that under the 5-cm SWFD.The flow velocity under the 5-,10-and 15-cm SWFDs was decreased to 89%,80%,and 77%,respectively,of that on saturated soil slopes.The results will enhance the understanding of rill flow hydrological processes under SWFD impact.
基金the National Natural Science Foundation of China(NO.42007067,41671275,41461057,41061029)the Science and Technology Plan Project of Guizhou Province(Qian Ke He Ji Chu[2020]1Y176)+3 种基金the National Key Research and Development Program of China(2016YFC0502604)the First Class Discipline Construction Projects of Guizhou Province(GNYL[2017]007)the Young Scientific and Technological Talents Growth Project in Colleges and Universities of Guizhou Province(Qian Ke Jiao KY Zi[2021]082)the National Natural Sci Foundation training program for young teachers in Guizhou Uni-versity(Gui Da Pei Yu[2019]36)。
文摘As an extreme manifestation of environmental degradation,karst rock desertification is caused by soil loss and rock exposure.In some areas with serious rocky desertification,there is no soil to be eroded or leaked.The soil loss in these areas superimposes soil erosion and unique subsurface loss by soil leakage through fissures,pipelines,sinkholes,etc.,which directly reduce soil resources and accelerate rocky desertification.However,the factors driving soil erosion and subsurface loss by soil leakage are still unclear.Rainfall experiments were conducted on simulated slopes with surface-exposed bedrock and subsurface fissures based on field investigations in a karst rocky desertification area of Guizhou Province,China.Four factors,including rainfall intensity,slope gradient,bedrock exposure rate and subsurface fissure degree,were considered in the experiment.We found that the amount of soil surface erosion and subsurface leakage loss is driven not only by the runoff volume but also by other influential factors.Rainfall intensity is the driving factor determining the amount of surface erosion and subsurface leakage loss of soil and water and the relationship between them.The slope gradient plays a leading role only in subsurface fissure flow leakage loss.The bedrock exposure rate drives the surface soil erosion rate,shows a critical value(30%),and dominates the fissure flow leakage loss rate.Subsurface fissure density plays an important role in the surface loss of soil and water;however,an increase in the subsurface fissure density does not obviously accelerate the subsurface leakage loss of soil and water.Although this result,obtained from laboratory simulations,may differ at the field scale or larger,it could provide a foundation for systematic studies on soil erosion/leakage and insights into the relations between rocky desertification and soil erosion/leakage and their driving factors in karst rocky desertification.
基金Supported by the University of Mississippi and the USDA Agricultural Research Service
文摘This paper presents a physically-based integrated hydrologic model that can simulate the rain-fall-induced 2D surface water flow, 3D variably saturated subsurface flow, upland soil erosion and transport, and contaminant transport in the surface-subsurface system of a watershed. The model couples surface and subsurface flows based on the assumption of continuity conditions of pressure head and exchange flux at the ground, considering infiltration and evapotranspiration. The upland rill/interrill soil erosion and transport are simulated using a non-equilibrium transport model. Contaminant transport in the integrated surface and subsurface domains is simulated using advection-diffusion equations with mass changes due to sediment sorption and desorption and exchanges between two domains due to infiltration, diffusion, and bed change. The model requires no special treatments at the interface of upland areas and streams and is suitable for wetland areas and agricultural watersheds with shallow streams.