In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated....In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.展开更多
The crystal structure of {[Cd(sulfadiazine)2]n[Cd(sulfadiazine)2·H2O]n} (1) comprises of two different Cd centers in which sulfadiazine is used as a quadridentate and bidentate ligand to coordinate to Cd1 center,...The crystal structure of {[Cd(sulfadiazine)2]n[Cd(sulfadiazine)2·H2O]n} (1) comprises of two different Cd centers in which sulfadiazine is used as a quadridentate and bidentate ligand to coordinate to Cd1 center, while it acts as a tridentate and bidentate ligand to bridge to Cd2 center, and the oxygen atom from water also coordinates to Cd2 center. As a result, the title compound bears two different 1D chain. CCDC: 274945.展开更多
Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for t...Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for the separation of interested components. Box-Behnken factorial design was effectively applied for the separation optimization of eight structurally related sulfonamides using capillary zone electrophorosis and reverse high performance liquid chromatography. Optimum values for volume ratio of THF to H2O in eluent, column temperature and flow rate of eluent are found as 12 to 88, 35℃ and 1.0 mL/min, respectively. Box-Behnken modified optimization model is extended to separation by capillary electrophoresis (CE). While using CE, a satisfactory separation is achieved with a minimum resolution larger than 1.0 for a separation time less than 10 min.展开更多
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions (No. 1105007001 )the Ph. D. Programs Foundation of Ministry of Education of China (No. 20100092120018)the Natural Science Foundation of Jiangsu Province (No. BK2009453)
文摘In order to explore the reaction mechanism of Fe^3+ and the mineralization effect of the micropollutant, Fe^3+ assisted photocatalytic oxidation of sulfadiazine (SD) in the TiO2 suspended solution is investigated. The effect of Fe^3+ participation, the degradation kinetics of SD, the effect of SD mineralization and the possible mechanism of Fe^3+ participation in TiO2 suspension are analyzed by adding FeCl3, taking samples at a given time and determining the SD concentration. Results indicate that the degradation of SD catalyzed by TiO2/ Fe^3+ is faster than that catalyzed by TiO2 or Fe^3+ separately. The photocatalytic degradation of SD follows the pseudo-first- order kinetics model in a range of 20 to 80 mg/L of initial concentration. The mineralization rate of SD can be enhanced by the addition of Fe^3+ in the TiO2 suspended solution. The mechanism of the rapid degradation of SD is proposed, which indicates that Fe^3+ adsorbed on the surface of TiO2 particles acts as an electron acceptor. The amount of recombining electronhole pairs decreases, and the amount of hydroxyl radicals increases. The increased hydroxyl radical strengthens the degradation of SD in the TiO2/Fe^3+ suspended solution.
文摘The crystal structure of {[Cd(sulfadiazine)2]n[Cd(sulfadiazine)2·H2O]n} (1) comprises of two different Cd centers in which sulfadiazine is used as a quadridentate and bidentate ligand to coordinate to Cd1 center, while it acts as a tridentate and bidentate ligand to bridge to Cd2 center, and the oxygen atom from water also coordinates to Cd2 center. As a result, the title compound bears two different 1D chain. CCDC: 274945.
基金Project(20235010) support by the NSFC-KOSEF Scientific Cooperation ProgramProject supported by the Program for New Century Talents of University in Henan ProvinceProgram for Backbone Teacher in Henan Province, China
文摘Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for the separation of interested components. Box-Behnken factorial design was effectively applied for the separation optimization of eight structurally related sulfonamides using capillary zone electrophorosis and reverse high performance liquid chromatography. Optimum values for volume ratio of THF to H2O in eluent, column temperature and flow rate of eluent are found as 12 to 88, 35℃ and 1.0 mL/min, respectively. Box-Behnken modified optimization model is extended to separation by capillary electrophoresis (CE). While using CE, a satisfactory separation is achieved with a minimum resolution larger than 1.0 for a separation time less than 10 min.