期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Zinc extraction from zinc oxidized ore using(NH4)2SO4 roasting−leaching process 被引量:3
1
作者 Xiao-yi Shen Hong-mei Shao +3 位作者 Ji-wen Ding Yan Liu Hui-min Gu Yu-chun Zhai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第11期1471-1481,共11页
An improved method of(NH4)2SO4 roasting followed by water leaching to utilize zinc oxidized ores was studied.The operating parameters were obtained by investigating the effects of the molar ratio of(NH4)2SO4 to zinc,r... An improved method of(NH4)2SO4 roasting followed by water leaching to utilize zinc oxidized ores was studied.The operating parameters were obtained by investigating the effects of the molar ratio of(NH4)2SO4 to zinc,roasting temperature,and holding time on zinc extraction.The roasting process followed the chemical reaction control mechanism with the apparent activation energy value of 41.74 kJ·mol^−1.The transformation of mineral phases in roasting was identified by X-ray diffraction analysis combined with thermogravimetry–differential thermal analysis curves.The water leaching conditions,including the leaching temperature,leaching time,stirring velocity,and liquid-to-solid ratio,were discussed,and the leaching kinetics was studied.The reaction rate was obtained under outer diffusion without product layer control;the values of the apparent activation energy for two stages were 4.12 and 8.19 kJ·mol^−1.The maximum zinc extraction ratio reached 96%while the efficiency of iron extraction was approximately 32%under appropriate conditions.This work offers an effective method for the comprehensive use of zinc oxidized ores. 展开更多
关键词 zinc oxidized ore ammonium sulfate roasting water leaching KINETICS MECHANISM extraction ratio
下载PDF
Chemical Evolution of LiCoO2 and NaHSO4·H2O Mixtures with Different Mixing Ratios During Roasting Process 被引量:3
2
作者 WANG Dahui WEN Hao +2 位作者 CHEN Huaijing YANG Yujiao LIANG Hongyan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2016年第4期674-677,共4页
Mixtures of NaHSO4·H2O and LiCoO2 extracted from spent lithium-ion batteries were prepared with molar ratios of 1:1, 1:2 and 1:3. The chemical evolution of the LiCoO2 and NaHSO4-H20 mixtures during the roastin... Mixtures of NaHSO4·H2O and LiCoO2 extracted from spent lithium-ion batteries were prepared with molar ratios of 1:1, 1:2 and 1:3. The chemical evolution of the LiCoO2 and NaHSO4-H20 mixtures during the roasting process was investigated by means of thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray diffraction(XRD), scanning electron (XPS). The results show that the chemical reactions in microscopy(SEM), and X-ray photoelectron spectroscopy the LiCoO2 and NaHSO4·H2O mixtures proceed during the roasting process. The Li element in the product of the roasting process is in the form of LiNa(SO4). With the increase of the proportion of NaHSO4·H2O in the mixtures, the Co element evolves as follows: LiCoO2→Co3O4→Na6Co(SOa)4→Na2Co(SO4)2. The roasting products exhibit dense structures and irregular shapes, and the bonding energy of Co increases. 展开更多
关键词 Spent lithium-ion battery LiCo02 sulfating roasting Chemical evolution
原文传递
Selective lithium recovery from black powder of spent lithiumion batteries via sulfation reaction:phase conversion and impurities influence 被引量:1
3
作者 Hao Liu Jia-Liang Zhang +3 位作者 Guo-Qiang Liang Meng Wang Yong-Qiang Chen Cheng-Yan Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2350-2360,共11页
The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of imp... The aim of this study is to present a new understanding for the selective lithium recovery from spent lithium-ion batteries(LIBs)via sulfation roasting.The composition of roasting products and reaction behavior of impurity elements were analyzed through thermodynamic calculations.Then,the effects of sulfuric acid dosage,roasting temperature,roasting time,and impurity elements were assessed on the leaching efficiency of valuable metals.Characterization methods such as X-ray diffraction(XRD),scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS),and X-ray photoelectron spectroscopy(XPS)were employed to analyze the phase transformation mechanism during roasting process.The results indicate that after sulfation roasting(n(H_(2)SO_(4)):n(Li)=0.5,550℃,2 h),94%lithium can be selectively recovered by water leaching and more than 95%Ni,Co,and Mn can be leached through acid leaching without the addition of reduction agent.During the sulfation roasting process,the lithium in LiNi_(x)Mn_(y)Co_zO_(2)is mainly converted to Li_(2)SO_(4),while the Ni,Co and Mn are first transformed to sulfate and then converted into oxide form.In addition,impurity elements such as Al and F will combine with lithium to form LiF and LiAlO_(2),which will reduce the leaching rate of lithium.These results provide a new understanding on the mechanisms of phase conversion during sulfation roasting and reveal the influence of impurity elements for the lithium recovery from spent LIBs. 展开更多
关键词 Spent lithium-ion batteries(LIBs) Thermodynamic calculations Sulfation roasting Impurity elements Conversion mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部