The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have inves...The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes.展开更多
The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration direc...The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration directly by oxidants with existence of ultrasonic has been advanced. The process of leaching nickel from nickel sulfide concentration by using the system of persulfate and silver has been determined. The influence of different factors on the leaching rates of nickel,such as with and without ultrasonic,the concentration of Na2S2O8,liquid-solid ratio and the concentration of AgNO3 have been explored. The results show that:(1) in the oxidative leaching system,nickel can be leached completely as Ni2+ or NiSO4(aq.) from nickel sulfide concentration in theory;(2) the nicopyrite can not exist steadily in the persulfate acid leaching system,but Ni2+can. Meanwhile,sulfur may be existed steadily in the leaching process;(3) nicopyrite with much lower electrostatic potential may be leached earlier than chalcopyrite and sideropyrite;and(4) the overall reaction rate of the leaching process can be enhanced with ultrasonic radiation,but it does not change the mechanism of leaching. The more oxidant concentration or higher liquid-solid ratio is,the higher leaching percentage of nickel. The leaching percentage of nickel can be increased significantly by adding a small amount of AgNO3 during the leaching processes. Under the same conditions,the higher concentration of AgNO3 is,the higher leaching yields of nickel will be obtained.展开更多
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w...Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.展开更多
The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amou...The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.展开更多
In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduc...In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.展开更多
Rhombohedral-phase NiS micro/nanorods were synthesized on a large scale through a hydrothermal method using NiCl2·6H2O and thiourea crystals as starting precursors. Recrystallized thiourea was observed to play an...Rhombohedral-phase NiS micro/nanorods were synthesized on a large scale through a hydrothermal method using NiCl2·6H2O and thiourea crystals as starting precursors. Recrystallized thiourea was observed to play an important role in the formation of mi- cro/nanosized rods and flower-like structures. The molar ratio and reaction temperature of the precursors influenced the morphology and phase of NiS products. Pure rhombohedral NiS micro/nanorods were obtained on a large scale when the molar ratio between NiCl2·6H2O and thiourea crystals was fixed at 2:1, and the mixture was heated at 250℃ for 5 h. Flower-like NiS nanostructures were formed when the molar ratio between NiCl2·6H2O and thiourea crystals was maintained at 1:1. The Raman and Fourier-transform infrared (FTIR) spectra of the as-prepared rhombohedral NiS micro/nanorods were collected, and their magnetic properties were investigated. The results showed that the FTIR absorption peaks of the as-prepared product are located at 634 cm^-1 and their Raman peaks are located at 216 and 289 cm^-1; the as-prepared NiS micro/nanorods exhibited weak ferromagnetic behavior due to the size effect.展开更多
An electrocatalyst with heterogeneous nanostructure, especially the hierarchical one, generally shows a more competitive activity than that of its single-component counterparts for oxygen evolution reaction(OER), due ...An electrocatalyst with heterogeneous nanostructure, especially the hierarchical one, generally shows a more competitive activity than that of its single-component counterparts for oxygen evolution reaction(OER), due to the synergistically enhanced kinetics on enriched active sites and reconfigured electronic band structure. Here this work introduces hierarchical heterostructures into a NiMo@NiS/MoS_(2)@Ni_(2)S_(2)/MoO_(x)(NiMoS) composite by one-pot controlled moderative sulfidation. The optimal solvent composition and addition of NaOH enable NiMoS to own loose and porous structures, smaller nanoparticle sizes, optimal phase composition and chemical states of elements, improving the OER activity of NiMoS. To achieve current densities of 50 and 100 mA cm^(-1), small overpotentials of 275 and 306 mV are required respectively, together with a minor Tafel slope of 58 mV dec^(-1), which outperforms most reported sulfide catalysts and IrO_(2). The synergistic effects in the hierarchical heterostructures expose more active sites,adjust the electronic band structure, and enable the fast charge transfer kinetics, which construct an optimized local coordination environment for high OER electrocatalytic activity. Furthermore, the hierarchical heterostructures suppress the distinct lowering of electrical conductivity and collapse of pristine structures resulted from the metal oxidation and synchronous S leaching during OER, yielding competitive catalytic stability.展开更多
The anodic behavior of synthetic nickel sulfides in sulfuric acid solutions was studied.When the anodes of Ni_3S_2 ,Ni_7S_6 and NiS are actively dissolved respectively,a solid layer forms on the electrode surface with...The anodic behavior of synthetic nickel sulfides in sulfuric acid solutions was studied.When the anodes of Ni_3S_2 ,Ni_7S_6 and NiS are actively dissolved respectively,a solid layer forms on the electrode surface with its nature and composition depending on the potentials applied. Based on the electrochemical phenomena,phase and elemental compositions of the solid layer formed on the electrode surface were determined.The apparent number of electrons transfer- red during dissolution of Ni^(2+)was also measured.It can be considered that there are three parallel reactions ocurred on the electrode:the reaction with formation of HSO_4^- or SO_4^(2-), the reaction with formation of sulfides as intermediates and the reaction of Jorming elemental sulfur.With NiS_2 as an anode,formation of SO_4^(2-)or HSO_4^- can be considered as the only re- action occurred on the electrode.展开更多
The availability of polymetallic ores is getting leaner in grade and is larger but inferior in volumes than in the past, making the extraction of copper, nickel and other non-ferrous metals metallurgically more diffic...The availability of polymetallic ores is getting leaner in grade and is larger but inferior in volumes than in the past, making the extraction of copper, nickel and other non-ferrous metals metallurgically more difficult to produce. The standard technologies, including enrichment and concentration, do not provide methods for obtaining monometallic concentrates and high extraction of metals into the commercial product. Pyrometallurgical processing of large volumes of poor raw materials is not economical and is complicated from the technological point of view. Conditions of chemical enrichment of poor natural materials have been studied with the use of technology of salt exchange leaching. The main impurity in sulfide ores of nonferrous metals is iron present in the forms of pyrite and pyrrhotite and the properties of chemical enrichment for nickel in pyrite concentrates has been investigated in this work. On the basis of thermodynamic analysis carried out with the use of Potential-pH Pourbaix’s Diagrams, it has been established that, with the use of nickel salt, it is possible to leach iron sulfides from ores. Based on the study of the mechanism and kinetics of the process of dissolution of iron sulfides with nickel salts, it was established that during the dissolution, the chemical composition and thermodynamic characteristics of the dissolved iron sulfides change—the residues from leaching are enriched with iron sulfides that are rich in sulfur and also result with elemental sulfur formation. Enrichment of leaching residues with sulfide iron with increased sulfur content and formation on the surface of nickel sulfide leads to increase of diffusional resistances and the process is limited by the velocity of mass transfer. To increase the velocity of the process and completeness of the reaction, it is necessary to activate the process, in particular, by grinding the solid phase.展开更多
Objective To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immortal human bronchial epithelial cell line, and ...Objective To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immortal human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared wkh that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P〈0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in pl6 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.展开更多
Powders of hexagonal-structured single-crystalline nickel sulfide nanorods have been synthesized in cetyltrimethy ammonium bromide (CTAB)/water/hexane/n-pentanol quaternary microemulsion under hydrothermal condition...Powders of hexagonal-structured single-crystalline nickel sulfide nanorods have been synthesized in cetyltrimethy ammonium bromide (CTAB)/water/hexane/n-pentanol quaternary microemulsion under hydrothermal conditions by using the reaction of carbamide and carbon disulfide as a sulfide source. Single-crystalline nickel nanorods have been synthesized via thermal decomposition by using single-crystalline nickel sulfide nanorods as precursor. The influence of different reaction parameters on the morphology of the products has been investigated. The structure, morphology and magnetic properties of the products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), calorimeter (TGA-DSC) and vibrating sample magnetometer showed that the specific saturation magnetization (σs) and 37.5 emu/g and 68.50e, respectively. thermogravimetric analysis-differential scanning (VSM). The results of coercivity values (Hc) magnetic measurements of nickel nanorods were展开更多
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma...Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.展开更多
Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is def...Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.展开更多
Materials featured with self-supported three-dimensional network,hierarchical pores and rich electrochemical active sites are considered as promising electrodes for pseudocapacitors.Herein,a novel strategy for the gro...Materials featured with self-supported three-dimensional network,hierarchical pores and rich electrochemical active sites are considered as promising electrodes for pseudocapacitors.Herein,a novel strategy for the growth of nickel-cobalt bisulfide(Ni Co S)nanosheets arrays on carbon cloth(CC)as supercapacitor electrodes is reported,involving deposition of two-dimensional metal-organic framework(MOF)precursors on the CC skeletons,conversion of MOF into nickel-cobalt layered double-hydroxide by ion exchange process and formation of Ni Co S by a sulfidation treatment.The Ni Co S nanosheets with rough surface and porous structures are uniformly anchored on the CC skeletons.The unique architecture endows the composite(Ni Co S/CC)with abundant accessible active sites.Besides,robust electrical/mechanical joint between the nanosheets and the substrates is attained,leading to the improved electrochemical performance.Moreover,an asymmetric supercapacitor device is constructed by using Ni Co S/CC and activated carbon as a positive electrode and a negative electrode,respectively.The optimized device exhibits a high specific capacitance,large energy density and long cycle life.The Ni Co S/CC electrode with intriguing electrochemical properties and mechanical flexibility holds great prospect for next-generation wearable devices.展开更多
Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped g...Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process.展开更多
A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via sol...A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method. Among the nickel cobalt sulfides with different Ni/Co contents, the coral-like Ni1.01Co1.99S4 (Ni/Co, 1/2) delivers ultrafast and stable Na-ion storage performance (350 mAh·g−1 after 1,000 cycles at 1 A·g−1 and 355 mAh·g−1 at 5 A·g−1). The remarkable electrochemical properties can be attributed to the enhanced conductivity by co-existence of bimetallic components, the unique coral-like micro/nanostructure, which could prevent structural collapse and self-aggregation of nanoparticles, and the easily accessibility of electrolyte, and fast Na+ diffusion upon cycling. Detailed kinetics studies by a galvanostatic intermittent titration technique (GITT) reveal the dynamic change of Na+ diffusion upon cycling, and quantitative kinetic analysis indicates the high contribution of pseudocapacitive behavior during charge-discharge processes. Moreover, the ex-situ characterization analysis results further verify the Na-ion storage mechanism based on conversion reaction. This study is expected to provide a feasible design strategy for the bimetallic sulfides materials toward high performance sodium-ion batteries.展开更多
Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a mu...Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a multiphase nickel iron sulfide(MPS)hybrid electrode with a hierarchical structure of iron doped NiS and Ni3S2,possessing a benchmark OER activity in alkaline media with a potential as low as 1.33 V(vs.reversible hydrogen electrode)to drive an OER current density of 10 mA cm^-2.The Fe doped NiS,combined with highly conductive disulfide phase on porous Ni foam,is believed to be responsible for the ultrahigh activity.Furthermore,density functional theory simulation reveals that partially oxidized sulfur sites in Fe doped NiS could dramatically lower the energy barrier for the rate-determining elementary reaction,thus contributing to the active oxygen evolution.展开更多
An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic co...An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.展开更多
Developing bifunctional electrocatalysts with improved efficiency and stability in overall water splitting is of extreme importance for renewable energy utilization.In this work,an in situ N doping strategy was demons...Developing bifunctional electrocatalysts with improved efficiency and stability in overall water splitting is of extreme importance for renewable energy utilization.In this work,an in situ N doping strategy was demonstrate to boost the efficiency and stability of nickel molybdenum sulfide both in electrocatalytic hydrogen evolution reaction and oxygen evolution reaction.Experimental and theoretical results indicate that such modification offers enriched active sites for electrochemical reaction,and further increases the kinetic driven force of water electrolysis.As a result,the N–NiMoS electrode exhibits a remarkably improved performance with rather low potential of 1.54 V to offer a current density of 10 mA cm;for overall water splitting,which is 130 mV decrease than that of pristine one.In addition,impressive electrochemical stability also reveals a 76.6%preservation of initial current density after 100 h test,which is superior than that of pristine one after 25 h test.Therefore,the potential to enhance the performance of electrocatalysts by as-proposed route promises a valuable way to develop efficient catalysts with enhanced property for electrochemical applications.展开更多
基金the support by the National Natural Science Foundation of China(11972219 and 11902185)the support of Shanghai Sailing Program(19YF1415100)+2 种基金the Young Elite Scientist Sponsorship Program by CAST(2019QNRC001)the support of the National Natural Science Foundation of China(52090022)the Natural Science Foundation for Distinguished Young Scholars of Hebei Province(E2020203085)。
文摘The electrochemical performance of lithium-ion batteries,i.e.specific capacity and cyclability,is primarily determined by chemical reversibility and structural stability of the electrodes in cycling.Here we have investigated the fundamental reaction behaviors of nickel sulfide(NixSy)as lithium-ion battery anodes by in-situ TEM.We find that Ni_(3)S_(2)is the electrochemically stable phase,which appears in the first cycle of the NixSyanode.From the second cycle,conversion between Ni_(3)S_(2)and Li_(2)S/Ni is the dominant electrochemical reaction.In lithiation,the NixSynanoparticles evolve into a mixture of Ni nanocrystals embedded in Li_(2)S matrix,which form a porous structure upon full lithiation,and with the recrystallization of the Ni_(3)S_(2)phase in delithiation,a compact and interconnected network is built.Structural stability in cycles is susceptible to particle size and substrate restraint.Carbon substrate can certainly improve the tolerance for size-dependent pulverization of NixSynanoparticles.When NixSynanoparticle exceeds the critical size value,the morphology of the particle is no longer well maintained even under the constraints of the carbon substrate.This work deepens the understanding of electrochemical reaction behavior of conversiontype materials and helps to rational design of high-energy density battery anodes.
基金Supported by the National Natural Science Foundation of China (50874087 50978212) the Key Projects in the National Science and Technology Pillar Program (2009BAA20B02)
文摘The feasibility of oxidation leaching process of nickel from nickel sulfide ore and the form of different components in the lixivium has been studied at first. The method of leaching nickel sulfide concentration directly by oxidants with existence of ultrasonic has been advanced. The process of leaching nickel from nickel sulfide concentration by using the system of persulfate and silver has been determined. The influence of different factors on the leaching rates of nickel,such as with and without ultrasonic,the concentration of Na2S2O8,liquid-solid ratio and the concentration of AgNO3 have been explored. The results show that:(1) in the oxidative leaching system,nickel can be leached completely as Ni2+ or NiSO4(aq.) from nickel sulfide concentration in theory;(2) the nicopyrite can not exist steadily in the persulfate acid leaching system,but Ni2+can. Meanwhile,sulfur may be existed steadily in the leaching process;(3) nicopyrite with much lower electrostatic potential may be leached earlier than chalcopyrite and sideropyrite;and(4) the overall reaction rate of the leaching process can be enhanced with ultrasonic radiation,but it does not change the mechanism of leaching. The more oxidant concentration or higher liquid-solid ratio is,the higher leaching percentage of nickel. The leaching percentage of nickel can be increased significantly by adding a small amount of AgNO3 during the leaching processes. Under the same conditions,the higher concentration of AgNO3 is,the higher leaching yields of nickel will be obtained.
基金financially supported by National Natural Science Foundation of China(21601057)Hunan Provincial Natural Science Foundation of China(2018JJ3116)Excellent Youth Fund of Hunan Provincial Education Department(18B298)
文摘Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials.
基金Projects(51704028,51574036) supported by the National Natural Science Foundation of China。
文摘The response surface methodology(RSM)was used to optimize the operating parameters during the bioleaching of Jinchuan high-magnesium nickel sulfide ore.The particle size,acid addition,pulp density and inoculation amount were chosen as the investigated parameters.To maximize the leaching efficiency of nickel,copper,cobalt and minimize the dissolution of magnesium and iron ions,the model suggested a combination of optimal parameters of particles less than 0.074 mm being 72.11%,sulfuric acid addition being 300 kg/t,pulp density being 5%and inoculation amount being 12.88%.Under the conditions,the average results of three parallel experiments were 89.43%of nickel leaching efficiency,36.78%of copper leaching efficiency,84.07%of cobalt leaching efficiency,49.19%of magnesium leaching efficiency and 0.20 g/L of iron concentration.The model indicated that the most significant factor in response of the leaching efficiency of valuable metal is the particle size,and the most significant factor in response to the leaching efficiency of harmful ions(Mg2+)is the amount of sulfuric acid addition.And according to the suggested models,no significance of the interaction effect between particle size and acid addition was shown.Under the optimized parameters suggested by models,the valuable metals could be separated from harmful ions during the bioleaching process.
文摘In order to utilize the chemical energy in hydrometallurgical process of sulfide minerals reasonably and to simplify the purifying process, the electrogenerative process was applied and a dual cell system was introduced to investigate FeCl3 leaching of nickel sulfide concentrate. Some factors influencing the electrogenerative leaching, such as electrode structure, temperature and solution concentration were studied. The results show that a certain quantity of electrical energy accompanied with the leached products can be acquired in the electrogenerative leaching process. The output current and power increase with the addition of acetylene black to the electrode. Varying the components of electrode just affects the polarization degree of anode. Increasing FeCl3 concentration results in a sharp increase in the output of the leaching cell when c(FeCl3) is less than 0.1 mol/L. The optimum value of NaCl concentration for electrogenerative leaching nickel sulfide concentrate with FeCl3 is 3.0 mol/L. Temperature influences electrogenerative leaching by affecting anodic and cathodic polarization simultaneously. The apparent activation energy is determined to be 34.63 kJ/mol in the range of 298 K to 322 K. The leaching rate of Ni2+ is 29.3% after FeCl3 electrogenerative leaching of nickel sulfide concentrate for 620 min with a filter bag electrode.
基金financially supported by the National Science Foundation of China (Nos. 11305274 and 11304407)the Natural Science Foundation of Chongqing City, China (No. cstc.2011jja50005)
文摘Rhombohedral-phase NiS micro/nanorods were synthesized on a large scale through a hydrothermal method using NiCl2·6H2O and thiourea crystals as starting precursors. Recrystallized thiourea was observed to play an important role in the formation of mi- cro/nanosized rods and flower-like structures. The molar ratio and reaction temperature of the precursors influenced the morphology and phase of NiS products. Pure rhombohedral NiS micro/nanorods were obtained on a large scale when the molar ratio between NiCl2·6H2O and thiourea crystals was fixed at 2:1, and the mixture was heated at 250℃ for 5 h. Flower-like NiS nanostructures were formed when the molar ratio between NiCl2·6H2O and thiourea crystals was maintained at 1:1. The Raman and Fourier-transform infrared (FTIR) spectra of the as-prepared rhombohedral NiS micro/nanorods were collected, and their magnetic properties were investigated. The results showed that the FTIR absorption peaks of the as-prepared product are located at 634 cm^-1 and their Raman peaks are located at 216 and 289 cm^-1; the as-prepared NiS micro/nanorods exhibited weak ferromagnetic behavior due to the size effect.
基金financial supports from the National Natural Science Foundation of China (52004155,51690164, and 51805321)the China Postdoctoral Science Foundation (2020M681261)the Science and Technology Commission of Shanghai Municipality (19XD1401600 and 19010500300)。
文摘An electrocatalyst with heterogeneous nanostructure, especially the hierarchical one, generally shows a more competitive activity than that of its single-component counterparts for oxygen evolution reaction(OER), due to the synergistically enhanced kinetics on enriched active sites and reconfigured electronic band structure. Here this work introduces hierarchical heterostructures into a NiMo@NiS/MoS_(2)@Ni_(2)S_(2)/MoO_(x)(NiMoS) composite by one-pot controlled moderative sulfidation. The optimal solvent composition and addition of NaOH enable NiMoS to own loose and porous structures, smaller nanoparticle sizes, optimal phase composition and chemical states of elements, improving the OER activity of NiMoS. To achieve current densities of 50 and 100 mA cm^(-1), small overpotentials of 275 and 306 mV are required respectively, together with a minor Tafel slope of 58 mV dec^(-1), which outperforms most reported sulfide catalysts and IrO_(2). The synergistic effects in the hierarchical heterostructures expose more active sites,adjust the electronic band structure, and enable the fast charge transfer kinetics, which construct an optimized local coordination environment for high OER electrocatalytic activity. Furthermore, the hierarchical heterostructures suppress the distinct lowering of electrical conductivity and collapse of pristine structures resulted from the metal oxidation and synchronous S leaching during OER, yielding competitive catalytic stability.
文摘The anodic behavior of synthetic nickel sulfides in sulfuric acid solutions was studied.When the anodes of Ni_3S_2 ,Ni_7S_6 and NiS are actively dissolved respectively,a solid layer forms on the electrode surface with its nature and composition depending on the potentials applied. Based on the electrochemical phenomena,phase and elemental compositions of the solid layer formed on the electrode surface were determined.The apparent number of electrons transfer- red during dissolution of Ni^(2+)was also measured.It can be considered that there are three parallel reactions ocurred on the electrode:the reaction with formation of HSO_4^- or SO_4^(2-), the reaction with formation of sulfides as intermediates and the reaction of Jorming elemental sulfur.With NiS_2 as an anode,formation of SO_4^(2-)or HSO_4^- can be considered as the only re- action occurred on the electrode.
文摘The availability of polymetallic ores is getting leaner in grade and is larger but inferior in volumes than in the past, making the extraction of copper, nickel and other non-ferrous metals metallurgically more difficult to produce. The standard technologies, including enrichment and concentration, do not provide methods for obtaining monometallic concentrates and high extraction of metals into the commercial product. Pyrometallurgical processing of large volumes of poor raw materials is not economical and is complicated from the technological point of view. Conditions of chemical enrichment of poor natural materials have been studied with the use of technology of salt exchange leaching. The main impurity in sulfide ores of nonferrous metals is iron present in the forms of pyrite and pyrrhotite and the properties of chemical enrichment for nickel in pyrite concentrates has been investigated in this work. On the basis of thermodynamic analysis carried out with the use of Potential-pH Pourbaix’s Diagrams, it has been established that, with the use of nickel salt, it is possible to leach iron sulfides from ores. Based on the study of the mechanism and kinetics of the process of dissolution of iron sulfides with nickel salts, it was established that during the dissolution, the chemical composition and thermodynamic characteristics of the dissolved iron sulfides change—the residues from leaching are enriched with iron sulfides that are rich in sulfur and also result with elemental sulfur formation. Enrichment of leaching residues with sulfide iron with increased sulfur content and formation on the surface of nickel sulfide leads to increase of diffusional resistances and the process is limited by the velocity of mass transfer. To increase the velocity of the process and completeness of the reaction, it is necessary to activate the process, in particular, by grinding the solid phase.
基金This work was supported by a grant (No. 39170651 and 30200235) from National Natural Science Foundation of China.
文摘Objective To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immortal human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared wkh that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P〈0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in pl6 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.
基金the National Natural Science Foundation of China (Grant No. 90206017) the High Technology Development and Research Program of Ministry of Science and Technology of China (Grant No. 2003BA301A21).
文摘Powders of hexagonal-structured single-crystalline nickel sulfide nanorods have been synthesized in cetyltrimethy ammonium bromide (CTAB)/water/hexane/n-pentanol quaternary microemulsion under hydrothermal conditions by using the reaction of carbamide and carbon disulfide as a sulfide source. Single-crystalline nickel nanorods have been synthesized via thermal decomposition by using single-crystalline nickel sulfide nanorods as precursor. The influence of different reaction parameters on the morphology of the products has been investigated. The structure, morphology and magnetic properties of the products were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), calorimeter (TGA-DSC) and vibrating sample magnetometer showed that the specific saturation magnetization (σs) and 37.5 emu/g and 68.50e, respectively. thermogravimetric analysis-differential scanning (VSM). The results of coercivity values (Hc) magnetic measurements of nickel nanorods were
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515110859)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province+2 种基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut National de la Recherche Scientifique(INRS)。
文摘Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
基金the National Natural Science Foundation of China(Nos.51302079,51702138 and 51403193)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.
基金supported by NSFC(21801200,U1905215,U1705251 and 51872220)Innovative Research Funds of SKLWUT(2017-ZD-4)Fundamental Research Funds for the Central Universities(WUT:2019IVB050)。
文摘Materials featured with self-supported three-dimensional network,hierarchical pores and rich electrochemical active sites are considered as promising electrodes for pseudocapacitors.Herein,a novel strategy for the growth of nickel-cobalt bisulfide(Ni Co S)nanosheets arrays on carbon cloth(CC)as supercapacitor electrodes is reported,involving deposition of two-dimensional metal-organic framework(MOF)precursors on the CC skeletons,conversion of MOF into nickel-cobalt layered double-hydroxide by ion exchange process and formation of Ni Co S by a sulfidation treatment.The Ni Co S nanosheets with rough surface and porous structures are uniformly anchored on the CC skeletons.The unique architecture endows the composite(Ni Co S/CC)with abundant accessible active sites.Besides,robust electrical/mechanical joint between the nanosheets and the substrates is attained,leading to the improved electrochemical performance.Moreover,an asymmetric supercapacitor device is constructed by using Ni Co S/CC and activated carbon as a positive electrode and a negative electrode,respectively.The optimized device exhibits a high specific capacitance,large energy density and long cycle life.The Ni Co S/CC electrode with intriguing electrochemical properties and mechanical flexibility holds great prospect for next-generation wearable devices.
基金financially supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2020A1515110473 and 2019A1515110528)。
文摘Designing highly active and stable electrocata-lysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)is a challenge for energy con-version and storage technology.In this work,a S and N co-doped graphene supported cobalt–nickel sulfide composite catalyst(rGO@SN-CoNi_(2)S_(4))was synthesized simply via a one-step hydrothermal method.The as-synthesized CoNi_(2)S_(4)particles grew in a mosaic manner inside GO lamellae and were encapsulated with graphene.As a bifunctional catalyst,the r GO@SN-CoNi_(2)S_(4)exhibits excellent electrocatalytic performance under alkaline con-ditions,which only required the overpotential of 142.6 mV(vs.RHE)and 310 m V(vs.RHE)to deliver a current density of 10 mA·cm^(-2) for HER and OER,respectively.The good hydrophilicity of the r GO@SN,the pure phase of bimetallic structure,and the chemical coupling/interaction between the CoNi_(2)S_(4)and the rGO@SN are attributable to be the possible reasons responsible for the higher HER and OER catalytic activities.Additionally,the rGO@SN-CoNi_(2)S_(4)also shows a great potential for serving as an excellent cathode and anode electrolyzer during the water splitting process.
基金This work was supported by the Shandong Provincial Natural Science Foundation (Nos. ZR2020QB123, ZR2020QB108, and ZR2019MEM030)the National Natural Science Foundation of China (Nos. 51972180, 22071135, and 51572134)+2 种基金Academy of Sciences large apparatus United Fund of China (No. U1832187)Key Research & Development Project of Shandong Province (No. 2019GGX102070)the Program for Scientific Research Innovation Team in Colleges and Universities of Jinan (No. 2018GXRC006).
文摘A series of bimetallic nickel cobalt sulfides with hierarchical micro/nano architectures were fabricated via a facile synthesis strategy of bimetallic micro/nano structure precursor construction-anion exchange via solvothermal method. Among the nickel cobalt sulfides with different Ni/Co contents, the coral-like Ni1.01Co1.99S4 (Ni/Co, 1/2) delivers ultrafast and stable Na-ion storage performance (350 mAh·g−1 after 1,000 cycles at 1 A·g−1 and 355 mAh·g−1 at 5 A·g−1). The remarkable electrochemical properties can be attributed to the enhanced conductivity by co-existence of bimetallic components, the unique coral-like micro/nanostructure, which could prevent structural collapse and self-aggregation of nanoparticles, and the easily accessibility of electrolyte, and fast Na+ diffusion upon cycling. Detailed kinetics studies by a galvanostatic intermittent titration technique (GITT) reveal the dynamic change of Na+ diffusion upon cycling, and quantitative kinetic analysis indicates the high contribution of pseudocapacitive behavior during charge-discharge processes. Moreover, the ex-situ characterization analysis results further verify the Na-ion storage mechanism based on conversion reaction. This study is expected to provide a feasible design strategy for the bimetallic sulfides materials toward high performance sodium-ion batteries.
基金supported by the National Natural Science Foundation of Chinathe National Key Research and Development Project (2018YFB1502401)+4 种基金the Royal Society and Newton Fund through Newton Advanced Fellowship award (NAF\R1\191294)the Program for Changjiang Scholars and Innovative Research Team in the Universitythe Fundamental Research Funds for the Central Universitiesthe Longterm Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of Chinathe financial support from China Scholarships Council (CSC)
文摘Development of highly active electrocatalysts for oxygen evolution reaction(OER)is one of the critical issues for water splitting,and most reported catalysts operate at overpotentials above 190 mV.Here we present a multiphase nickel iron sulfide(MPS)hybrid electrode with a hierarchical structure of iron doped NiS and Ni3S2,possessing a benchmark OER activity in alkaline media with a potential as low as 1.33 V(vs.reversible hydrogen electrode)to drive an OER current density of 10 mA cm^-2.The Fe doped NiS,combined with highly conductive disulfide phase on porous Ni foam,is believed to be responsible for the ultrahigh activity.Furthermore,density functional theory simulation reveals that partially oxidized sulfur sites in Fe doped NiS could dramatically lower the energy barrier for the rate-determining elementary reaction,thus contributing to the active oxygen evolution.
文摘An alternative metal/alloy production method,known as direct electrochemical reduction(DER),was introduced for the fabrication of CuNi alloys from mixed sulfides(Cu2S,NiS)under both galvanostatic and potentiostatic conditions.The influences of the process parameters(e.g.,cell voltage and current)on the compositions of the reduced compounds were investigated to yield industrially desirable alloys,namely,CuNi10,CuNi20,and CuNi30.The electrochemical behaviors of Cu2S and NiS in CaCl2 melt were examined at a temperature of 1200°C via cyclic voltammetry(CV).Based on the CV results,the cathodic reduction of Cu2S occurred in one step and cathodic reductions of NiS occurred in two steps,i.e.,Cu2S?Cu for copper reduction and NiS?Ni3S2?Ni for nickel reduction.Galvanostatic studies revealed that it was possible to fabricate high-purity CuNi10 alloys containing a maximum sulfur content of 320×10-6 via electrolysis at 10 A for 15 min.Scanning electron microscopy along with energy-dispersive X-ray spectrometry and optical emission spectroscopy(OES)examinations showed that it was possible to fabricate CuNi alloys of preferred compositions and with low levels of impurities,i.e.,less than 60×10-6 sulfur,via DER at 2.5 V for 15 min.
基金financially supported by the National Key Research Program(No.2016YFD0400601)the National Natural Science Foundation of China(Nos.91634118 and 11575228)
文摘Developing bifunctional electrocatalysts with improved efficiency and stability in overall water splitting is of extreme importance for renewable energy utilization.In this work,an in situ N doping strategy was demonstrate to boost the efficiency and stability of nickel molybdenum sulfide both in electrocatalytic hydrogen evolution reaction and oxygen evolution reaction.Experimental and theoretical results indicate that such modification offers enriched active sites for electrochemical reaction,and further increases the kinetic driven force of water electrolysis.As a result,the N–NiMoS electrode exhibits a remarkably improved performance with rather low potential of 1.54 V to offer a current density of 10 mA cm;for overall water splitting,which is 130 mV decrease than that of pristine one.In addition,impressive electrochemical stability also reveals a 76.6%preservation of initial current density after 100 h test,which is superior than that of pristine one after 25 h test.Therefore,the potential to enhance the performance of electrocatalysts by as-proposed route promises a valuable way to develop efficient catalysts with enhanced property for electrochemical applications.