期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A Novel Sulfided Mo/C Catalyst for Direct Vapor Phase Carbonylation of Methanol at Atmospheric Pressure 被引量:1
1
作者 Feng PengDepartment of Chemical Engineering, South China University of Technology, Guangzhou 510640, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第1期31-36,共6页
The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the sup... The direct carbonylation of methanol, without any halide in the feed as apromoter, is presented. A series of Mo catalysts supported on activated carbon, γ-Al_2O_3 and SiO_2were prepared. The results show that the support greatly affects the Mo catalyst in the directvapor-phase carbonylation of methanol, and activated carbon is the best supports of the investigatedsupports. In addition, the relationships between adsorptions of NH_3 and CO and carbonylation ofmethanol were investigated. A novel sulfided Mo/C catalyst had high activity and selectivity for thevapor phase carbonylation of methanol to methyl acetate without the addition of a CH_3I promoter tothe feed. The reaction conditions were optimized at a reaction temperature of 573 K, a methanolconcentration of 23 mol% and a carbon monoxide space velocity of 3,000 L/(kg·h). Under theseoptimal conditions a methanol conversion of 50%, carbonylation selectivity of 80 rnol%, andspace-time yield of 8.0 mol/(kg·h) were obtained. The active phase of this novel sulfided Mo/Ccatalyst is the non-crystalline phase, and the active component is present as MoS_(2.5) on thesurface of the activated carbon. 展开更多
关键词 METHANOL CARBONYLATION sulfided catalyst MOLYBDENUM catalystsupport activated carbon heterogeneous catalysis
下载PDF
Simultaneous recovery of carbon and sulfur resources from reduction of CO_2 with H_2S using catalysts 被引量:5
2
作者 Hui Su Yuyang Li +3 位作者 Ping Li Yongxiu Chen Zhizhi Zhang Xiangchen Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期110-116,共7页
An approach to the simultaneous reclamation of carbon and sulfur resources from CO2 and H2S has been proposed and effectively implemented with the aid of catalysts. A brief thermodynamic study reveals the potential of... An approach to the simultaneous reclamation of carbon and sulfur resources from CO2 and H2S has been proposed and effectively implemented with the aid of catalysts. A brief thermodynamic study reveals the potential of direct reduction of CO2 with H2S(15:15 mol% balanced with N2) for selective production of CO and elemental sulfur. The experiments carried out in a fixed-bed flow reactor over the temperature range of 400–800 °C give evidence of the importance of the employment of catalysts. Both the conversions of the reactants and the selectivities of the target products can be substantially promoted over most catalysts studied. Nevertheless, little difference appears among their catalytic performance. The results also prove that the presence of CO2 can remarkably enhance H2S conversion and the sulfur yield in comparison with H2S direct decomposition. A longtime reaction test on Mg O catalyst manifests its superior durability at high temperature(700 °C) and huge gas hourly space velocity(100,000 h-1). Free radicals initiated by catalysts are supposed to dominate the reactions between CO2 and H2S. 展开更多
关键词 Carbon dioxide Hydrogen sulfide Simultaneous recovery Reduction catalyst
下载PDF
MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalysts for eugenol hydrodeoxygenation to produce phenolic chemicals
3
作者 Xinyong Diao Na Ji +7 位作者 Mingyuan Zheng Qingling Liu Chunfeng Song Yibo Huang Qing Zhang Alazar Alemayehu Luoyun Zhang Changhai Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期600-610,共11页
Hydrodeoxygenation(HDO) is an effective alternative to produce value-added chemicals and liquid fuels by removing oxygen from lignin-derived compounds. Sulfide catalysts have been proved to have good activity for th... Hydrodeoxygenation(HDO) is an effective alternative to produce value-added chemicals and liquid fuels by removing oxygen from lignin-derived compounds. Sulfide catalysts have been proved to have good activity for the HDO and particularly high selectivity to phenolic products. Herein, we presented a novel way to prepare the layered structure sulfide catalysts(MgFeMo-S) derived from MgFe hydrotalcites via the intercalation of Mo in consideration of the memory effect of the calcined hydrotalcite. By varying the Mg/Fe mole ratio, a series of MgFeMo-S catalysts were successfully prepared and characterized by nitrogen adsorption/desorption isotherms, X-ray diffraction(XRD), transmission electron microscopy(TEM),and inductively coupled plasma optical emission spectrometer(ICP-OES). The characterization results indicated that the MgFeMo-S catalyst has retained the unique layered structure, which can facilitate uniform dispersion of the MoS2 species on both the surface and interlayer of the catalysts. For the HDO of eugenol, the Mg1Fe2Mo-S catalysts exhibited the best HDO activity among all the catalysts due to its higher active metal contents and larger pore size. The HDO conversion was 99.6% and the yield of phenolics was 63.7%, under 5 MPa initial H2 pressure(measured at RT) at 300 ℃ for 3 h. More importantly,MoS2 species deposited on the interlayer galleries in the MgFeMo-S catalysts resulted in dramatically superior HDO activity to MoS2/Mg1Fe2-S catalyst. Based on the mechanism investigation for eugenol, the HDO reaction route of eugenol under sulfide catalytic system has been proposed for the first time. Further applicability of the catalyst on HDO of more lignin-derived compounds was operated, which showed good HDO activity and selectivity to produce aromatic products. 展开更多
关键词 MgFe Hydrotalcite Sulfide catalysts Layered structure HYDRODEOXYGENATION EUGENOL
下载PDF
Influence of Gas Components on the Formation of Carbonyl Sulfide over Water-Gas Shift Catalyst B303Q
4
作者 Ju Shangguan Litong Liang Huiling Fan Fang Shen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期53-59,共7页
Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for... Water-gas shift reaction catalyst at lower temperature (200-400 ℃) may improve the conversion of carbon monoxide. But carbonyl sulfide was found to be present over the sulfided cobaltmolybdenum/alumina catalyst for water-gas shift reaction. The influences of temperature, space velocity, and gas components on the formation of carbonyl sulfide over sulfided cobalt-molybdenum/alumina catalyst B303Q at 200-400 ℃ were studied in a tubular fixed-bed quartz-glass reactor under simulated water-gas shift conditions. The experimental results showed that the yield of carbonyl sulfide over B303Q catalyst reached a maximum at 220 ℃ with the increase in temperature, sharply decreased with the increase in space velocity and the content of water vapor, increased with the increase in the content of carbon monoxide and carbon dioxide, and its yield increased and then reached a stable value with the increase in the content of hydrogen and hydrogen sulfide. The formation mechanism of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was discussed on the basis of how these factors influence the formation of COS. The yield of carbonyl sulfide over B303Q catalyst at 200-400 ℃ was the combined result of two reactions, that is, COS was first produced by the reaction of carbon monoxide with hydrogen sulfide, and then the as-produced COS was converted to hydrogen sulfide and carbon dioxide by hydrolysis. The mechanism of COS formation is assumed as follows: sulfur atoms in the Co9Ss-MoS2/Al2O3 crystal lattice were easily removed and formed carbonyl sulfide with CO, and then hydrogen sulfide in the water-gas shift gas reacted with the crystal lattice oxygen atoms in CoO-MoOa/Al2O3 to form Co9S8-MoS2/Al2O3. This mechanism for the formation of COS over water-gas shift catalyst B303Q is in accordance with the Mars-Van Krevelen's redox mechanism over metal sulfide. 展开更多
关键词 FORMATION carbonyl sulfide sulfided cobalt-molybdenum/alumina catalyst water-gas shift
下载PDF
Advanced oxidative degradation of sulfamethoxazole by using bowl-like FeCuS@Cu_(2)S@Fe^(0) catalyst to efficiently activate peroxymonosulfate
5
作者 Xiaobo Wang Yu Zhou +3 位作者 Sylvestre Ndayiragije Nan Wang Heqing Tang Lihua Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第4期348-364,共17页
A novel hierarchical bowl-like FeCuS@Cu_(2)S@Fe^(0)nanohybrid catalyst(B-FeCuS@Cu_(2)S@Fe^(0))was synthesized for removing sulfamethoxazole(SMX) through catalytic activation of peroxymonosulfate(PMS). It was found tha... A novel hierarchical bowl-like FeCuS@Cu_(2)S@Fe^(0)nanohybrid catalyst(B-FeCuS@Cu_(2)S@Fe^(0))was synthesized for removing sulfamethoxazole(SMX) through catalytic activation of peroxymonosulfate(PMS). It was found that this catalyst exhibited excellently high catalytic activity. Under optimized reaction conditions, all the added SMX(12 mg/L) could be completely degraded within 5 min. The SMX degradation followed pseudo first order kinetics with a rate constant k of 0.89 min^(-1), being 1.38, 4.51, 8.99 and 35.6 times greater than that of other catalysts including Fe^(0)(0.644 min^(-1)in the very initial stage), bowl-like iron-doped CuS(B-FeCuS, 0.197 min^(-1)), bowl-like CuS(B-CuS, 0.099 min^(-1)) and Cu_(2)O(0.025 min^(-1)), respectively. During the degradation, several reactive oxygen species(·OH, SO_(4)·-and1O_(2)) were generated with ·OH as the main one as confirmed by electron paramagnetic resonance analysis. The SMX degradation in the present system included both radical and non-radical mediated processes. A possible mechanistic insight of the PMS activation by bowl Fe^(0)decorated CuS@Cu_(2)S-based catalyst was proposed according to X-ray photoelectron spectroscopic(XPS) analysis, and the degradation pathway of SMX was speculated by monitoring the degradation intermediates with liquid chromatography coupled with mass spectrometry(LC-MS). 展开更多
关键词 SULFAMETHOXAZOLE PEROXYMONOSULFATE Sulfide catalyst Degradation Reactive oxygen species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部