The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tes...The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.展开更多
The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation result...The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.展开更多
The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were firs...The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were first collected and activated by the collector,and then depressed strongly by Ca(OH)2 in the strong alkaline solution,and finally reactivated by H2SO4.The flotation tests of pure minerals show that in this system the flotation behaviors of sphalerite and pyrite present irreversible characteristics along with the change of pulp potential.Furthermore,through the CDR system,considerable differences in the flotabilities between galena and sphalerite/pyrite are also observed.The XPS analysis results for galena,sphalerite and pyrite in a CDR system show that in the strong alkaline solution,some of the collectors,that have been already adsorbed on the mineral surface in the collecting process,are desorbed by Ca(OH)2.The XPS analysis results also show that in H2SO4 reactivating process,the surface hydroxides of galena are desorbed again by H2SO4 and replaced by diethyl dithiocarbamate,but those of sphalerite and pyrite are not desorbed.This flotation system may be applied to the bulk-differential flotation process of sulfur-bearing low-grade lead-zinc ores.展开更多
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ...The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.展开更多
Colloform pyrite(CPy)is widely distributed in the Tongling mineralization cluster of the Middle-Lower Yangtze River Mineralization Belt(MLYRMB),China.There have many debates as to whether such CPy is associated with L...Colloform pyrite(CPy)is widely distributed in the Tongling mineralization cluster of the Middle-Lower Yangtze River Mineralization Belt(MLYRMB),China.There have many debates as to whether such CPy is associated with Late Mesozoic igneous or Carboniferous sedimentation.CPy from the Xinqiao deposit,a representative of the stratabound sulfide deposits in the MLYRMB,was studied by powder X-ray diffraction(XRD),field-emission scanning electron microscopy(SEM),and high-resolution transmission electron microscopy(TEM).The results show that CPy mainly comprises pyrite,pyrrhotite,quartz,and illite.Pyrite in CPy shows cubic,globule,and xenomorphic morphologies.No octahedral or pyritohedron was observed.Most of the quartz crystals display xenomorphic morphology,where pyrite mold are popular on the surface.Organic matter(OM),which is usually bound to illite,is an important component in CPy.Morphological investigations which exhibit detrital features of quartz and clay minerals indicate that they were derived from continental weathering.Specially,some hexagonal pyrrhotite nanoparticles which show mackinawite morphology are coexisted with OM.The results indicate that the transformation process of sulfides possibly is mackinawite(the precursor)—hexagonal pyrrhotite-pyrite.Thus,compositional and micro-textural characteristics of CPy in Xinqiao deposit suggest it to be a sedimentary origin rather than a hydrothermal origin which is associated with Yanshanian magmatism.Moreover,the coexistence of CPy and stratabound sulfide orebodies in the MLYRMB suggests a causal link between the two.It is considered that CPy might have served as a Cu mineralization geochemical barrier for the Cu-bearing ore-forming fluids,which originated from the Mesozoic magma in the MLYRMB.展开更多
Cyclic voltammogram was used to study the electrochemical properties of the couple electrode of galena pyrite in xanthate and diethyldithiocarbamate (DDTC) solutions. When galena connects with pyrite, there exists gal...Cyclic voltammogram was used to study the electrochemical properties of the couple electrode of galena pyrite in xanthate and diethyldithiocarbamate (DDTC) solutions. When galena connects with pyrite, there exists galvanic interaction between two minerals. Because pyrite is nobler than galena, the anode oxidation of collector on the surface of galena is improved, and the anode oxidation of reagent on the surface of pyrite is weaken. The experimental results showed that it is difficult for the dixanthogen and (DDTC) 2 to be adsorbed on the surface of pyrite under galvanic interactions with galena.展开更多
Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentratio...Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentrations of Fe+{3+}, the pH values, status of the flowing of the solution and the solution salinity (e.g. the concentrations of Na-2SO-4) and monitoring the galvanic currents and potentials, studies were conducted in this work on the galvanic interaction between pyrite acting as the anode and galena acting as the cathode. The results indicated that the concentrations of Fe+{3+}, pH values and the flowing of the solution exhibit a great effect on the galvanic interaction of galena-pyrite couple, while the salinity of the solution has only a slight influence on the interaction. The experiments also revealed that in case cracks exist on the surface of pyrite electrode, the potential of pyrite will decrease so sharply as to be lower than that of galena under the same experimental condition. The experimental results were explained in terms of the Butler-Volume equation and the theory of mixed potential.展开更多
Pyrite-type sulfides(PTS)exhibit promising intrinsic activities for oxygen reduction and evolution reactions(ORR/OER).However,their poor electrical conductivities may limit the charge transfer rate to inevitably lower...Pyrite-type sulfides(PTS)exhibit promising intrinsic activities for oxygen reduction and evolution reactions(ORR/OER).However,their poor electrical conductivities may limit the charge transfer rate to inevitably lower activity.Here,yolk-shell structured cobalt-pyrite nanospheres(CoS_(2)YSS)are prepared and modified with amino groups as nucleation sites for coupling highly-conductive needle-like nitrogendoped carbon via a facile solvothermal method(CoS_(2)YSS@NC).The as-marked CoS_(2)YSS@NC-0.5 shows a gap between yolk and shell,and an obvious exterior layer of grafted NC,which can provide an integrated structure,an interior place,and three exposed surfaces on CoS_(2).CoS_(2)YSS@NC-0.5 reveals higher ORR activity(half-wave potential of 0.88 V)and methanol resistance than commercial Pt/C.Due to in-situ formation of highly-active CoOOH,CoS_(2)YSS@NC-0.5 shows a better overpotential(244 mV at 10 mA/cm^(2))and Tafel slope(135 mV/dec)than RuO2.Zinc-air battery with CoS_(2)YSS@NC-0.5 air-cathode exhibits good open circuit potential(1.44 V),specific capacity(772.5 mAh/g)and cycling stability.Needle-like NC layer coated on the yolk-shell structure of CoS_(2)effectively lowers the charge transfer resistance to obtain extraordinary ORR/OER activities.It indicates that the integration of highly-conductive carbon onto pyritetype sulfides is an effective strategy to acquire durable bifunctional ORR/OER catalysts.展开更多
Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb...Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.展开更多
The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate ...The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.展开更多
In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-...In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-forming fluids and provide insights into the ore genesis with implications for future exploration. The Honghai deposit consists of upper lenticular ores comprising massive sulfides that are underlain by stockwork and disseminated sulfides. The textural and isotopic characteristics of the synsedimentary framboidal pyrite(Syn-Py) indicate its formation by biogenetic processes. Coarse-grained pyrite generations(M-Py1, M-Py2, and M-Py3) from the massive sulfides have high Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations and low Co, Se, Te, Ti, and Sn concentrations, indicating that they precipitated from metal-rich, low-to intermediate-temperature,oxidizing fluids. The high Te, Ti, and Sn concentrations and high Co/Ni ratios in the massive pyrite(M-Py4) associated with magnetite in the massive sulfide lenses, as well as the high Ti, V, Cr, and Ni concentrations and low Al, Mn, and Zn concentrations in the magnetite, suggest that the coexisting M-Py4 and magnetite precipitated under oxidizing and hightemperature(300℃ to 500℃) conditions. In contrast, pyrite grains from the underlying stockwork and veins(V-Py1, V-Py2, and V-Py3) are characterized by low Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations coupled with high Co, Se, Te, and Ti concentrations and high Co/Ni ratios, which are interpreted in terms of reducing and high-temperature ore-forming fluids. The large variations in δ^(34)S values from-6.4‰ to +29.9‰ suggest that the ore-forming fluids were derived from magmatic source that were significantly modified by seawater. The spatial variations of trace element assemblages of pyrite from different levels of the main massive orebodies can be used as an indicator for mineral exploration of Cu-Zn ores in the Honghai deposit.Although no significant difference in δ34S values is observed between the upper massive sulfide lenses and lower stockwork/vein zone, the spiky δ34S pattern noted in the massive pyrite can be used as a marker for the main massive orebodies.展开更多
基金Project(51274255)supported by the National Natural Science Foundation of ChinaProject supported by the Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of galvanic interaction between galena and pyrite on their flotation and electrochemical characters were studied by electrochemical,adsorption,flotation and FTIR techniques,respectively.Electrochemical tests indicate that galena is electrochemically more active than pyrite and serves as an anode in galvanic combination with pyrite.The galvanic current density from a mixture of galena and pyrite is 4 times as high as the self corrosion current density of galena,which indicates that the corrosion rate of galena is accelerated.Adsorption tests show that the adsorption of butyl xanthate on galena surface is enhanced,and affected by a combination of pyrite-galena mixtures and conditioning time.Compared with individual mineral particles,galvanic interaction reduces the floatability difference between galena and pyrite.The flotation recovery of galena decreases while that of pyrite increases when two minerals are mixed together due to the influence of galvanic interaction on the formation of hydrophilic/hydrophobic product.The FTIR results show that the formation of dixanthogen on pyrite surface is depressed due to the galvanic interaction.
基金Project(51764045)supported by the National Natural Science Foundation of ChinaProject(NJYT-18-B08)supported by Inner Mongolia Young Science&Technology Talent Support Plan,China+1 种基金Project(GK-201804)supported by Research Fund Program of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProject(DD20190574)supported by China Geological Survey Project
文摘The mechanism of sodium sulfide(Na2S)on the flotation of cyanide-depressed pyrite using potassium amyl xanthate(PAX)as collector was investigated by flotation test and electrochemical measurements.The flotation results show that both PAX and Na2S can promote the flotation recovery of cyanide-depressed pyrite and their combination can further improve the pyrite flotation recovery.Electrochemical measurements show that PAX and Na2S interacted with cyanide-depressed pyrite through different mechanisms.PAX competed with cyanide and was adsorbed on the pyrite surface in the form of dixanthogen,thus enhancing the hydrophobicity and flotation of cyanide-depressed pyrite.Unlike PAX,Na2S rendered the pyrite surface hydrophobic through the reduction of ferricyanide species and the formation of elemental sulfur S0 and polysulfide Sn2-.The combined application of PAX and Na2S induced superior pyrite flotation recovery because of a synergistic effect between PAX and Na2S.
基金Project(2008BAE60B00) supported by the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period,China
文摘The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were first collected and activated by the collector,and then depressed strongly by Ca(OH)2 in the strong alkaline solution,and finally reactivated by H2SO4.The flotation tests of pure minerals show that in this system the flotation behaviors of sphalerite and pyrite present irreversible characteristics along with the change of pulp potential.Furthermore,through the CDR system,considerable differences in the flotabilities between galena and sphalerite/pyrite are also observed.The XPS analysis results for galena,sphalerite and pyrite in a CDR system show that in the strong alkaline solution,some of the collectors,that have been already adsorbed on the mineral surface in the collecting process,are desorbed by Ca(OH)2.The XPS analysis results also show that in H2SO4 reactivating process,the surface hydroxides of galena are desorbed again by H2SO4 and replaced by diethyl dithiocarbamate,but those of sphalerite and pyrite are not desorbed.This flotation system may be applied to the bulk-differential flotation process of sulfur-bearing low-grade lead-zinc ores.
基金jointly supported by the foundation from Department of Science and Technology of Jiangxi Province(No.20232BAB213064)National Natural Science Foundation of China(No.42102088)foundation from the State Key Laboratory of Nuclear Resources and Environment(2022NRE33)。
文摘The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit.
基金supported by the National Natural Science Foundation of China(Grant nos 41672038,41572029,41872043)the National Key Research and Development Program of China(Grant no.2016YFC0600209)。
文摘Colloform pyrite(CPy)is widely distributed in the Tongling mineralization cluster of the Middle-Lower Yangtze River Mineralization Belt(MLYRMB),China.There have many debates as to whether such CPy is associated with Late Mesozoic igneous or Carboniferous sedimentation.CPy from the Xinqiao deposit,a representative of the stratabound sulfide deposits in the MLYRMB,was studied by powder X-ray diffraction(XRD),field-emission scanning electron microscopy(SEM),and high-resolution transmission electron microscopy(TEM).The results show that CPy mainly comprises pyrite,pyrrhotite,quartz,and illite.Pyrite in CPy shows cubic,globule,and xenomorphic morphologies.No octahedral or pyritohedron was observed.Most of the quartz crystals display xenomorphic morphology,where pyrite mold are popular on the surface.Organic matter(OM),which is usually bound to illite,is an important component in CPy.Morphological investigations which exhibit detrital features of quartz and clay minerals indicate that they were derived from continental weathering.Specially,some hexagonal pyrrhotite nanoparticles which show mackinawite morphology are coexisted with OM.The results indicate that the transformation process of sulfides possibly is mackinawite(the precursor)—hexagonal pyrrhotite-pyrite.Thus,compositional and micro-textural characteristics of CPy in Xinqiao deposit suggest it to be a sedimentary origin rather than a hydrothermal origin which is associated with Yanshanian magmatism.Moreover,the coexistence of CPy and stratabound sulfide orebodies in the MLYRMB suggests a causal link between the two.It is considered that CPy might have served as a Cu mineralization geochemical barrier for the Cu-bearing ore-forming fluids,which originated from the Mesozoic magma in the MLYRMB.
文摘Cyclic voltammogram was used to study the electrochemical properties of the couple electrode of galena pyrite in xanthate and diethyldithiocarbamate (DDTC) solutions. When galena connects with pyrite, there exists galvanic interaction between two minerals. Because pyrite is nobler than galena, the anode oxidation of collector on the surface of galena is improved, and the anode oxidation of reagent on the surface of pyrite is weaken. The experimental results showed that it is difficult for the dixanthogen and (DDTC) 2 to be adsorbed on the surface of pyrite under galvanic interactions with galena.
文摘Galvanic interactions between sulfide minerals have very important influences on hydrometallurgical processes, the supergene enrichment of sulfides and the formation of acid mine drainage. By changing the concentrations of Fe+{3+}, the pH values, status of the flowing of the solution and the solution salinity (e.g. the concentrations of Na-2SO-4) and monitoring the galvanic currents and potentials, studies were conducted in this work on the galvanic interaction between pyrite acting as the anode and galena acting as the cathode. The results indicated that the concentrations of Fe+{3+}, pH values and the flowing of the solution exhibit a great effect on the galvanic interaction of galena-pyrite couple, while the salinity of the solution has only a slight influence on the interaction. The experiments also revealed that in case cracks exist on the surface of pyrite electrode, the potential of pyrite will decrease so sharply as to be lower than that of galena under the same experimental condition. The experimental results were explained in terms of the Butler-Volume equation and the theory of mixed potential.
基金the support by National Natural Science Foundation of China(Nos.52070074 and 21806031)Outstanding Youth Fund of Heilongjiang Province(No.JQ2022E005)+2 种基金LongJiang Scholars Program(No.Q201912)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.HC202144)Graduate Student Innovation Research Projects of Heilongjiang University(No.YJSCX2022-219HLJU)。
文摘Pyrite-type sulfides(PTS)exhibit promising intrinsic activities for oxygen reduction and evolution reactions(ORR/OER).However,their poor electrical conductivities may limit the charge transfer rate to inevitably lower activity.Here,yolk-shell structured cobalt-pyrite nanospheres(CoS_(2)YSS)are prepared and modified with amino groups as nucleation sites for coupling highly-conductive needle-like nitrogendoped carbon via a facile solvothermal method(CoS_(2)YSS@NC).The as-marked CoS_(2)YSS@NC-0.5 shows a gap between yolk and shell,and an obvious exterior layer of grafted NC,which can provide an integrated structure,an interior place,and three exposed surfaces on CoS_(2).CoS_(2)YSS@NC-0.5 reveals higher ORR activity(half-wave potential of 0.88 V)and methanol resistance than commercial Pt/C.Due to in-situ formation of highly-active CoOOH,CoS_(2)YSS@NC-0.5 shows a better overpotential(244 mV at 10 mA/cm^(2))and Tafel slope(135 mV/dec)than RuO2.Zinc-air battery with CoS_(2)YSS@NC-0.5 air-cathode exhibits good open circuit potential(1.44 V),specific capacity(772.5 mAh/g)and cycling stability.Needle-like NC layer coated on the yolk-shell structure of CoS_(2)effectively lowers the charge transfer resistance to obtain extraordinary ORR/OER activities.It indicates that the integration of highly-conductive carbon onto pyritetype sulfides is an effective strategy to acquire durable bifunctional ORR/OER catalysts.
基金supported by the National Basic Research Program of China(grant no.2007CB411402)
文摘Trace elements and rare earth elements(REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry.The results indicate that V,Cu,Sn,Ga,Cd,In,and Se are concentrated in sphalerite,Sb,As,Ge,and Tl are concentrated in galena,and almost all trace elements in pyrite are low.The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites.The contents of Ge,Tl,In,and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites.It shows that REE concentrations are higher in pyrite than in sphalerite,and galena.In sphalerites,the REE concentration decreases from light-yellow sphalerites,brown sphalerites,to black sphalerites.The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites,respectively,indicating that the genesis of the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis.The relationship between LnGa and LnIn in sphalerite,and between LnBi and LnSb in galena,indicates that the Tianqiao Pb-Zn ore deposit might belong to sedimentary-reformed genesis.Based on the chondrite-normalized REE patterns,δEu is a negative anomaly(0.13-0.88),andδCe does not show obvious anomaly(0.88-1.31);all the samples have low total REE concentrations(〈3 ppm) and a wide range of light rare earth element/high rare earth element ratios(1.12-12.35).These results indicate that the ore-forming fluids occur under a reducing environment.Comparison REE compositions and parameters of sphalerites,galenas,pyrites,ores,altered dolostone rocks,strata carbonates,and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems,that is,different chronostratigraphic units could make an important contribution to the ore-forming fluids.Combined with the tectonic setting and previous isotopic geochemistry evidence,we conclude that the ore-deposit genesis is hydrothermal,sedimentary reformed,with multisources characteristics of ore-forming fluids.
基金Project (No. 41004) supported by the Cooperative Research Center for Sustainable Tourism, Australia.
文摘The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo- chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These properties included PH, reactive iron (FeR), pore-water sulfate (SO:42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-l in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (Fe3S4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the Pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.
基金Project(2004CB619201)supported by the National Basic Research Program of ChinaProject(50621063)supported by the National Natural Science Foundation of China
基金supported by the National Key R&D Program of China(Grant No.2018YFC0604006)the National Natural Science Foundation of China(Grant No.41572077)the Geological Survey Project of China(Grant No.1212011140056)。
文摘In this paper, we present textures, trace element compositions, and sulfur isotope data for pyrite from the Honghai volcanogenic massive sulfide deposit to place new constraints on the source and evolution of the ore-forming fluids and provide insights into the ore genesis with implications for future exploration. The Honghai deposit consists of upper lenticular ores comprising massive sulfides that are underlain by stockwork and disseminated sulfides. The textural and isotopic characteristics of the synsedimentary framboidal pyrite(Syn-Py) indicate its formation by biogenetic processes. Coarse-grained pyrite generations(M-Py1, M-Py2, and M-Py3) from the massive sulfides have high Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations and low Co, Se, Te, Ti, and Sn concentrations, indicating that they precipitated from metal-rich, low-to intermediate-temperature,oxidizing fluids. The high Te, Ti, and Sn concentrations and high Co/Ni ratios in the massive pyrite(M-Py4) associated with magnetite in the massive sulfide lenses, as well as the high Ti, V, Cr, and Ni concentrations and low Al, Mn, and Zn concentrations in the magnetite, suggest that the coexisting M-Py4 and magnetite precipitated under oxidizing and hightemperature(300℃ to 500℃) conditions. In contrast, pyrite grains from the underlying stockwork and veins(V-Py1, V-Py2, and V-Py3) are characterized by low Au, Ag, Cu, Zn, Pb, Sb, and Tl concentrations coupled with high Co, Se, Te, and Ti concentrations and high Co/Ni ratios, which are interpreted in terms of reducing and high-temperature ore-forming fluids. The large variations in δ^(34)S values from-6.4‰ to +29.9‰ suggest that the ore-forming fluids were derived from magmatic source that were significantly modified by seawater. The spatial variations of trace element assemblages of pyrite from different levels of the main massive orebodies can be used as an indicator for mineral exploration of Cu-Zn ores in the Honghai deposit.Although no significant difference in δ34S values is observed between the upper massive sulfide lenses and lower stockwork/vein zone, the spiky δ34S pattern noted in the massive pyrite can be used as a marker for the main massive orebodies.