<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that trea...<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that treats dyed cotton fabric under dry condition so as to avoid chemical pollutants. This study means to explore colour reflectance of decolourized sulfur dyed cotton texture using ozone plasma treatment. Sulfur dyed cotton textures with various colour depths (0.5%, 1.5%, 2.5%) were set up to be treated different plasma parameters, including ozone air concentrations (10%, 30%, 50%, 70%), water contents in terms of weight percentage (35%, 45%) of fabric and ozone air plasma treatment periods (10 mins, 20 mins, 30 mins). The colour fading result is assessed by the colour reflectance in percentage (R%) utilizing spectrophotometer under CIE standard illuminant D65. The valid colour fading based on high percentage of reflectance was demonstrated from plasma treatment under higher ozone air concentration (50% and 70% ozone in air) and longer time length of plasma treatment (20 mins and 30 mins). The level of water content contained in the cotton fabrics is appeared to have noteworthy relationship with the degree of decolourization. </div>展开更多
文摘<div style="text-align:justify;"> Ozone plasma treatment is accessible to be applied on shading adjustment and colour fading because of the capacity of ozone production. It is a green process that treats dyed cotton fabric under dry condition so as to avoid chemical pollutants. This study means to explore colour reflectance of decolourized sulfur dyed cotton texture using ozone plasma treatment. Sulfur dyed cotton textures with various colour depths (0.5%, 1.5%, 2.5%) were set up to be treated different plasma parameters, including ozone air concentrations (10%, 30%, 50%, 70%), water contents in terms of weight percentage (35%, 45%) of fabric and ozone air plasma treatment periods (10 mins, 20 mins, 30 mins). The colour fading result is assessed by the colour reflectance in percentage (R%) utilizing spectrophotometer under CIE standard illuminant D65. The valid colour fading based on high percentage of reflectance was demonstrated from plasma treatment under higher ozone air concentration (50% and 70% ozone in air) and longer time length of plasma treatment (20 mins and 30 mins). The level of water content contained in the cotton fabrics is appeared to have noteworthy relationship with the degree of decolourization. </div>