Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2...Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.展开更多
Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Her...Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.展开更多
With the growing concerns on global energy crisis and the greenhouse effect,the exploration on renewable energy and related emerging energy conversion and storage technologies are highly interested [1].Lithium sulfur ...With the growing concerns on global energy crisis and the greenhouse effect,the exploration on renewable energy and related emerging energy conversion and storage technologies are highly interested [1].Lithium sulfur (Li–S) battery system receives great attention for its high theoretical specific energy(2600 Wh/kg),which is deemed to be a promising candidate as next generation high energy density batteries [2].展开更多
To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the ...To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.展开更多
基金financially supported by the National Natural Science Foundation of China(21606065,51372060,and 21676067)Anhui Provincial Natural Science Foundation(1708085QE98)+1 种基金the Fundamental Research Funds for the Central Universities(JZ2017HGTB0198,JZ2018HGBZ0138)the Opening Project of CAS Key Laboratory of Materials for Energy Conversion(KF2018003)
文摘Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.
基金supported by National Natural Science Foundation of China(Nos.51772272 and 51728204)Fundamental Research Funds for the Central Universities(No.2018QNA4011)+3 种基金Science and Technology Program of Guangdong Province of China(No.2016A010104020)Pearl River S&T Nova Program of Guangzhou(No.201610010116)Qianjiang Talents Plan D(QJD1602029)Startup Foundation for Hundred-Talent Program of Zhejiang University.
文摘Rational design of hybrid carbon host with high electrical conductivity and strong adsorption toward soluble lithium polysulfides is the main challenge for achieving high-performance lithium-sulfur batteries(LSBs).Herein,novel binder-free Ni@N-doped carbon nanospheres(N-CNSs)films as sulfur host are firstly synthesized via a facile combined hydrothermal-atomic layer deposition method.The cross-linked multilayer N-CNSs films can effectively enhance the electrical conductivity of electrode and provide physical blocking“dams”toward the soluble long-chain polysulfides.Moreover,the doped N heteroatoms and superficial NiO layer on Ni layer can work synergistically to suppress the shuttle of lithium polysulfides by effective chemical interaction/adsorption.In virtue of the unique composite architecture and reinforced dual physical and chemical adsorption to the soluble polysulfides,the obtained Ni@N-CNSs/S electrode is demonstrated with enhanced rate performance(816 mAh g?1 at 2 C)and excellent long cycling life(87%after 200 cycles at 0.1 C),much better than N-CNSs/S electrode and other carbon/S counterparts.Our proposed design strategy offers a promising prospect for construction of advanced sulfur cathodes for applications in LSBs and other energy storage systems.
基金supported by the National Key Research and Development Program (No.2016YFA0202500)CAS Key Laboratory of Carbon Materials (No.KLCMKFJJ1701)
文摘With the growing concerns on global energy crisis and the greenhouse effect,the exploration on renewable energy and related emerging energy conversion and storage technologies are highly interested [1].Lithium sulfur (Li–S) battery system receives great attention for its high theoretical specific energy(2600 Wh/kg),which is deemed to be a promising candidate as next generation high energy density batteries [2].
基金financially supported by the National Key Research and Development Program of China(no.2016YFB0100200)Beijing Municipal Science and Technology Project(no.Z181100004518001)。
文摘To address the corrosion and dendrite issues of lithium metal anodes, a protective layer was ex-situ constructed by P4S10 modification. It was determined by X-ray photoelectron spectroscopy and Raman spectra that the main constituents of the protective layer were P4S10, Li3PS4 and other LixPySztype derivatives. The protective layer was proved to be effective to stabilize the interphase of lithium metal. With the modified Li anodes, symmetric cells could deliver stable Li plating/stripping for 16000 h;Li–S batteries exhibited a specific capacity of 520 m A h g-1 after 200 cycles at 1000 m A g-1 with average Coulombic efficiency of 97.9%. Therefore, introducing LixPySzbased layer to protect Li anode provides a new strategy for the improvement of Li metal batteries.