Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in hig...Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in highly sour gas fields.The multiphase-flow hydrodynamic model of the 90elbow was established by using the computational fluid dynamics(CFD)method.The scouring effects of the gasliquid mist fluid with the water-liquid fraction of 20%and particles with the diameter of 0.01 e0.05mm on elbows were explored within the flow velocity range of 0e20 m/s.In addition,the influences of secondary collision,mean curvature radius to diameter(R/D)ratio,inertial force,drag force,and Stokes number on trajectories of sulfur particles were studied.Moreover,the influences of hydrodynamic parameters of multiphase flow on corrosion inhibitor film were analyzed with the wall shear stress as the reference value.Serious erosion mainly occurred in the extrados of elbow as well as the junction between downstream pipeline and the intrados of elbow,the maximum erosion area occurs at 61.9.When the incident position of the particle was far away from the top of the inlet plane,the probability of secondary collision became smaller.Furthermore,the erosion rate decreased with the rise in the R/D radio.The maximum erosion rate of elbow increased with the increase in the Stoke number.The maximum erosion rate reached 0.428 mm/a at 0.05mm particle diameter and 20 m/s fluid velocity.The wall shear stress increased with the increase in fluid velocity and mass flow rate of particle,the fitting function of the wall shear stress curve was the Fourier type.The results indicated that highvelocity particles had a serious erosion effect on elbows and affected the stability of the corrosion inhibitor film.The erosion effect could be retarded by controlling the velocity and diameter of particles.The results provided technical supports for the safe production in highly sour gas fields.展开更多
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie...The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.展开更多
This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubr...This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubricant(LS-oil,MS-oil and HS-oil,all of which have different sulfur contents:0.182%,0.583% and 1.06%,respectively)were used in this study. The morphologies and nanostructures of exhaust particles were analyzed using high-resolution transmission electron microscopy(TEM). Size distributions of primary particles were determined through advanced image-processing software. Elemental compositions of exhaust particles were obtained through X-ray energy dispersive spectroscopy(EDS). Results show that as lubricant sulfur contents increase,the macroscopic structure of diesel exhaust particles turn from chain-like to a more complex agglomerate. The inner cores of the core-shell structure belonging to these primary particles change little; the shell thickness decreases,and the spacing of carbon layer gradually descends,and amorphous materials that attached onto outer carbon layer of primary particles increase. Size distributions of primary particles present a unimodal and normal distribution,and higher sulfur contents lead to larger size primary particles. The sulfur content in lubricants directly affects the chemical composition in the particles. The content of C(carbon)decreases as sulfur increases in the lubricants,while the contents of O(oxygen),S(sulfur)and trace elements(including S,Si(silicon),Fe(ferrum),P(phosphorus),Ca(calcium),Zn(zinc),Mg(magnesium),Cl(chlorine)and Ni(nickel))all increase in particles.展开更多
The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(d...The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(duration 〉 3 hr) and short-term(duration〈 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates(J30) showed a moderate correlation with the concentration of sulfuric acid([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events(Category I)(R^2= 0.66). The exponent in the fitting line of J30~ [H2SO4]nin these events was1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events,leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events(Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of 〉 10 nm new particles.展开更多
Ultrafine particles are associated with adverse health effects. Total Particle Number Concentration(TNC) of fine particles were measured during 2002 at the St. Louis — Midwest supersite. The time series showed over...Ultrafine particles are associated with adverse health effects. Total Particle Number Concentration(TNC) of fine particles were measured during 2002 at the St. Louis — Midwest supersite. The time series showed overall low level with frequent large peaks. The time series was analyzed alongside criteria pollutant measurements and meteorological observations. Multiple regression analysis was used to identify further contributing factors and to determine the association of different pollutants with TNC levels. This showed the strong contribution of sulfur dioxide(SO2) and nitrogen oxides(NO x) to high TNC levels. The analysis also suggested that increased dispersion resulting from faster winds and higher mixing heights led to higher TNC levels. Overall, the results show that there were intense particle nucleation events in a SO2 rich plume reaching the site which contributed around 29% of TNC. A further 40% was associated with primary emissions from mobile sources. By separating the remaining TNC by time of day and clear sky conditions,we suggest that most likely 8% of TNC are due to regional nucleation events and 23% are associated with the general urban background.展开更多
Seed particles Al2O3, Al2(SO4)3 and H2SO4 were selected to investigate their effects on secondary aerosol (SA) formation in toluene/NOx photooxidation under sulfur dioxide (SO2) and ammonia (NH3). Effect of se...Seed particles Al2O3, Al2(SO4)3 and H2SO4 were selected to investigate their effects on secondary aerosol (SA) formation in toluene/NOx photooxidation under sulfur dioxide (SO2) and ammonia (NH3). Effect of seed particles on SA formation was related to their acid-base properties and the presence of acid or alkaline gases. Under NH3-poor condition, SA formation increased with increasing SO2 concentration due to the acid-catalyzing effect of the oxidation products of SO2 (i.e. H2SO4), The enhancing effect of SO2 became unobvious under NH3-rieh condition, because NH3 would eliminate the acid-catalyzing effect by neutralizing the acid products. Acidic seeds H2SO4 accelerated SA formation under either SO2 or NH3 condition. Weak acidic Al2(SO4)3 seeds didn't affect obviously on SA formation. The inhibiting effect of amphoteric seeds Al2O3 on SA formation was related to the presence of SO2 / NH3 due to their acid-base property. Under NH3-poor condition, the inhibiting effect of Al2O3 on SA formation decreased with increasing concentration of SO2, while under NH3-rich condition, the inhibiting effect wasn't remarkable.展开更多
基金The authors acknowledge the support from the National Natural Science Foundation Project of China(No.51374177)the Supporting Program of Youth Backbone Teachers of Southwest Petroleum University.
文摘Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in highly sour gas fields.The multiphase-flow hydrodynamic model of the 90elbow was established by using the computational fluid dynamics(CFD)method.The scouring effects of the gasliquid mist fluid with the water-liquid fraction of 20%and particles with the diameter of 0.01 e0.05mm on elbows were explored within the flow velocity range of 0e20 m/s.In addition,the influences of secondary collision,mean curvature radius to diameter(R/D)ratio,inertial force,drag force,and Stokes number on trajectories of sulfur particles were studied.Moreover,the influences of hydrodynamic parameters of multiphase flow on corrosion inhibitor film were analyzed with the wall shear stress as the reference value.Serious erosion mainly occurred in the extrados of elbow as well as the junction between downstream pipeline and the intrados of elbow,the maximum erosion area occurs at 61.9.When the incident position of the particle was far away from the top of the inlet plane,the probability of secondary collision became smaller.Furthermore,the erosion rate decreased with the rise in the R/D radio.The maximum erosion rate of elbow increased with the increase in the Stoke number.The maximum erosion rate reached 0.428 mm/a at 0.05mm particle diameter and 20 m/s fluid velocity.The wall shear stress increased with the increase in fluid velocity and mass flow rate of particle,the fitting function of the wall shear stress curve was the Fourier type.The results indicated that highvelocity particles had a serious erosion effect on elbows and affected the stability of the corrosion inhibitor film.The erosion effect could be retarded by controlling the velocity and diameter of particles.The results provided technical supports for the safe production in highly sour gas fields.
基金supported by the Double First-Class Construction Funds of Sichuan University and National Natural Science Foundation of China(NNSFC)financial support from the National Science Foundation of China(51873126,51422305,51721091)。
文摘The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.
基金supported by the National Natural Science Foundation of China(No.50906062)
文摘This work investigates the effects of lubricant sulfur contents on the morphology,nanostructure,size distribution and elemental composition of diesel exhaust particle on a light-duty diesel engine. Three kinds of lubricant(LS-oil,MS-oil and HS-oil,all of which have different sulfur contents:0.182%,0.583% and 1.06%,respectively)were used in this study. The morphologies and nanostructures of exhaust particles were analyzed using high-resolution transmission electron microscopy(TEM). Size distributions of primary particles were determined through advanced image-processing software. Elemental compositions of exhaust particles were obtained through X-ray energy dispersive spectroscopy(EDS). Results show that as lubricant sulfur contents increase,the macroscopic structure of diesel exhaust particles turn from chain-like to a more complex agglomerate. The inner cores of the core-shell structure belonging to these primary particles change little; the shell thickness decreases,and the spacing of carbon layer gradually descends,and amorphous materials that attached onto outer carbon layer of primary particles increase. Size distributions of primary particles present a unimodal and normal distribution,and higher sulfur contents lead to larger size primary particles. The sulfur content in lubricants directly affects the chemical composition in the particles. The content of C(carbon)decreases as sulfur increases in the lubricants,while the contents of O(oxygen),S(sulfur)and trace elements(including S,Si(silicon),Fe(ferrum),P(phosphorus),Ca(calcium),Zn(zinc),Mg(magnesium),Cl(chlorine)and Ni(nickel))all increase in particles.
基金the National Natural Science Foundation of China (No. 41176099, No. 41306101)
文摘The oxidation of SO2 is commonly regarded as a major driver for new particle formation(NPF) in the atmosphere. In this study, we explored the connection between measured mixing ratio of SO2 and observed long-term(duration 〉 3 hr) and short-term(duration〈 1.5 hr) NPF events at a semi-urban site in Toronto. Apparent NPF rates(J30) showed a moderate correlation with the concentration of sulfuric acid([H2SO4]) calculated from the measured mixing ratio of SO2 in long-term NPF events and some short-term NPF events(Category I)(R^2= 0.66). The exponent in the fitting line of J30~ [H2SO4]nin these events was1.6. It was also found that SO2 mixing ratios varied a lot during long-term NPF events,leading to a significant variation of new particle counts. In the SO2-unexplained short-term NPF events(Category II), analysis showed that new particles were formed aloft and then mixed down to the ground level. Further calculation results showed that sulfuric acid oxidized from SO2 probably made a negligible contribution to the growth of 〉 10 nm new particles.
基金funded the present analysis through grant number RD-83455701the original measurements through cooperative agreement R-82805901-0
文摘Ultrafine particles are associated with adverse health effects. Total Particle Number Concentration(TNC) of fine particles were measured during 2002 at the St. Louis — Midwest supersite. The time series showed overall low level with frequent large peaks. The time series was analyzed alongside criteria pollutant measurements and meteorological observations. Multiple regression analysis was used to identify further contributing factors and to determine the association of different pollutants with TNC levels. This showed the strong contribution of sulfur dioxide(SO2) and nitrogen oxides(NO x) to high TNC levels. The analysis also suggested that increased dispersion resulting from faster winds and higher mixing heights led to higher TNC levels. Overall, the results show that there were intense particle nucleation events in a SO2 rich plume reaching the site which contributed around 29% of TNC. A further 40% was associated with primary emissions from mobile sources. By separating the remaining TNC by time of day and clear sky conditions,we suggest that most likely 8% of TNC are due to regional nucleation events and 23% are associated with the general urban background.
基金This work was supported by Scientific Research Foundation for Returned Scholars from Ministry of Education of China (No. 2013S010), Six Talent Peaks Project in Jiangsu Province (No. R2015L12). This work was also supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Nos. XDB05010102 and XDB05030100) and National Natural Science Foundation of China (Grant No. 21407158).
文摘Seed particles Al2O3, Al2(SO4)3 and H2SO4 were selected to investigate their effects on secondary aerosol (SA) formation in toluene/NOx photooxidation under sulfur dioxide (SO2) and ammonia (NH3). Effect of seed particles on SA formation was related to their acid-base properties and the presence of acid or alkaline gases. Under NH3-poor condition, SA formation increased with increasing SO2 concentration due to the acid-catalyzing effect of the oxidation products of SO2 (i.e. H2SO4), The enhancing effect of SO2 became unobvious under NH3-rieh condition, because NH3 would eliminate the acid-catalyzing effect by neutralizing the acid products. Acidic seeds H2SO4 accelerated SA formation under either SO2 or NH3 condition. Weak acidic Al2(SO4)3 seeds didn't affect obviously on SA formation. The inhibiting effect of amphoteric seeds Al2O3 on SA formation was related to the presence of SO2 / NH3 due to their acid-base property. Under NH3-poor condition, the inhibiting effect of Al2O3 on SA formation decreased with increasing concentration of SO2, while under NH3-rich condition, the inhibiting effect wasn't remarkable.