Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range...Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc展开更多
Originating from“rocking-chair concept”,lithium-ion batteries(LIBs)have become one of the most important electrochemical energy storage technolo-gies,which have largely impacted our daily life.The utilization of ele...Originating from“rocking-chair concept”,lithium-ion batteries(LIBs)have become one of the most important electrochemical energy storage technolo-gies,which have largely impacted our daily life.The utilization of electrolyte additives in small quantities(≤5%by wt or vol)has been long viewed as an economical and efficient approach to regulate the properties of electrolyte and electrode–electrolyte interphases and consequently improve the cycling perfor-mance of LIBs.Among all the kinds of electrolyte additives,sulfur-containing compounds have gained significant attention due to their unique features in building stable electrode–electrolyte interphases and protect battery cells from overcharging.In this work,advances and progresses of sulfur-containing addi-tives used in LIBs are overviewed,with special attention paid to the working mechanisms of these electrolyte additives.Particularly,four representative sulfur-containing compounds(i.e.,1,3-propane sultone,prop-1-ene-1,3-sultone,1,3,2-dioxathiolane-2,2-dioxide,and ethylene sulfite)are comparatively dis-cussed concerning their impact on electrode–electrolyte interphases and cell per-formances.Future work on the development of sulfur-containing compounds as functional electrolyte additives is also provided.The present review is antici-pated to be not only a base document to access the status quo in this research domain but also a guideline to select specialized additives and electrolytes for practical applications.展开更多
Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis ...Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis of sulfur-containing compounds in synthetic chemistry.In recent years,the utilization of sulfinic acids as versatile synthons has emerged as attractive and powerful approach to access various organosulfur compounds through sulfonylation,sulfinylation or sulfenylation reactions.In this review,we summarized the recent progress in the construction of various sulfur-containing compounds from sulfininc acids.Selected examples of substrates and the related reaction mechanisms are described here.This review intends to provide readers a comprehensive understanding on the synthesis of sulfur-containing molecules from sulfinic acids and provide help for future synthetic research.展开更多
Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the d...Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.展开更多
The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of p...The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of prototype molecules containing sulfur such as SF_2, SF_4, NSF_3, SF_1, H_2S are reported. It is convincingly shown that in highly electronegative environment the energy levels of the sulfur 3d orbitals are reduced to the vicinity of those of the ligand valence orbitals and their spatial distributions are contracted to the bonding area, and therefore they can participate in bond formation to a certain extent, which is enhanced by the formation of the d-p π back bonds. It seems that the result reported in this paper is helpful for the solution of the long-standing debate about the sulfur 3d orbital participation in bond formation.展开更多
The development of green and convenient methods for C–S bond formation has received significant attention because C–S bond widely occurs in many important pharmaceutical and biological compounds.Recently, visible-li...The development of green and convenient methods for C–S bond formation has received significant attention because C–S bond widely occurs in many important pharmaceutical and biological compounds.Recently, visible-light photoredox catalysis has been established as an efficient and general tool for the construction of C–C and C-heteroatom bonds. In this review, we have focused on the research on recent advances in C–S bond formation via visible-light photoredox catalysis, and the growing opportunities they present to the construction of complex chemical scaffolds for applications encompassing bioactive molecules synthesis, synthetic methodology development, and sulfur-containing drugs. We hope that this review will provide chemists with a synthetic tool that will open the door to further development of organsulfur chemistry.展开更多
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu...The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.展开更多
A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The ...A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.展开更多
Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and stron...Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and strong adaptability.In this paper,we summarized the research progress and remaining challenges in gold extraction using these noncyanide reagents.After a brief introduction to the preparation method,the transformation process of various sulfur-containing species in alkaline solutions was discussed.Thereafter,some insights into the mechanism of gold leaching in alkaline sulfur-containing solutions were presented from different aspects,including thermodynamics analysis,electrochemical dissolution,and leaching kinetics.Moreover,recent progress in in-situ generation of sulfur-containing anions from gold-bearing sulfide minerals was outlined as well.Gold passivation caused by sulfur species was discussed in particular because it is considered the greatest challenge facing sulfur-containing leaching systems.Alkaline sulfur-containing lixiviants are expected to serve as alternatives in industrial applications of gold extraction,particularly for refractory gold ores containing copper and carbonaceous matter.展开更多
In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing ...In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.展开更多
Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by...Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by spectroscopic and X-ray crystallographic techniques. A comparative study of the methods of synthesis has been made using both traditional and microwave techniques. A significant reduction in reaction time has been observed when the microwave method was used. In some of the reactions, the yields also increased significantly.展开更多
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce...CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical C...The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing.展开更多
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva...The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.展开更多
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
文摘Since the most sensitive resonance lines of nonmetallic elements are situated in vacuum ultraviolet region (below 190 nm), they can not be directly determined with a common AAS instrument covering the spectral range from 190 to 700 nm. The molecular absorption spectrometry is often used for the determination of nonmetallic elements. Syty et al. used vapor molecular absorption spectrometry(VMAS) to determine the sulfur dioxide and sulfide, in which a hydrogen hollow cathode lamp was used as a continuum source to determine SO;at 210 nm and a deuterium arc
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2020kfyXJJS095National Natural Science Foundation of China,Grant/Award Number:51172083。
文摘Originating from“rocking-chair concept”,lithium-ion batteries(LIBs)have become one of the most important electrochemical energy storage technolo-gies,which have largely impacted our daily life.The utilization of electrolyte additives in small quantities(≤5%by wt or vol)has been long viewed as an economical and efficient approach to regulate the properties of electrolyte and electrode–electrolyte interphases and consequently improve the cycling perfor-mance of LIBs.Among all the kinds of electrolyte additives,sulfur-containing compounds have gained significant attention due to their unique features in building stable electrode–electrolyte interphases and protect battery cells from overcharging.In this work,advances and progresses of sulfur-containing addi-tives used in LIBs are overviewed,with special attention paid to the working mechanisms of these electrolyte additives.Particularly,four representative sulfur-containing compounds(i.e.,1,3-propane sultone,prop-1-ene-1,3-sultone,1,3,2-dioxathiolane-2,2-dioxide,and ethylene sulfite)are comparatively dis-cussed concerning their impact on electrode–electrolyte interphases and cell per-formances.Future work on the development of sulfur-containing compounds as functional electrolyte additives is also provided.The present review is antici-pated to be not only a base document to access the status quo in this research domain but also a guideline to select specialized additives and electrolytes for practical applications.
基金supported by the Youth Innovation Technology Project of Higher School in Shandong Province(No.2019KJC021)Qinghai Science and Technology Achievement Transformation Project(No.2019-SF-122)Qinghai Key Laboratory of Tibetan Medicine Research(No.2021-ZJ-Y03)。
文摘Sulfur-containing organic compounds display wide applications in the field of materials science,synthetic chemistry,and pharmaceutical industry.Thus,numerous synthetic strategies have been developed for the synthesis of sulfur-containing compounds in synthetic chemistry.In recent years,the utilization of sulfinic acids as versatile synthons has emerged as attractive and powerful approach to access various organosulfur compounds through sulfonylation,sulfinylation or sulfenylation reactions.In this review,we summarized the recent progress in the construction of various sulfur-containing compounds from sulfininc acids.Selected examples of substrates and the related reaction mechanisms are described here.This review intends to provide readers a comprehensive understanding on the synthesis of sulfur-containing molecules from sulfinic acids and provide help for future synthetic research.
基金Supported by the State Science Foundation of China (No. 20737001)
文摘Structural and thermodynamic parameters of 56 oxygen-containing and 56 sulfur- containing organic compounds were computed at the B3LPY/6-311G** level using density functional theory (DFT) method. Furthermore,the dependent equations between the experimental data of boiling points (Tb) and theoretical parameters were proposed with SPSS12.0 for windows software,whose correlation coefficients R2 are 0.933 and 0.945. These dependent equations were validated by cross-validation method (q2 are 0.923 and 0.929,respectively). VIF (variance inflation factors) and t-value methods were also used to verify the significance and self-correlationship of each variable. Results indicate that our dependent equation exhibits good prediction ability,and molecular polarizability (α) is the main factor affecting the Tb of oxygen- and sulfur-containing organic compounds. To our interest,obvious dependence could also be found among the oxygen- and sulfur-containing organic compounds' experimental data of boiling points (Tb) with R^2 of 0.857.
文摘The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of prototype molecules containing sulfur such as SF_2, SF_4, NSF_3, SF_1, H_2S are reported. It is convincingly shown that in highly electronegative environment the energy levels of the sulfur 3d orbitals are reduced to the vicinity of those of the ligand valence orbitals and their spatial distributions are contracted to the bonding area, and therefore they can participate in bond formation to a certain extent, which is enhanced by the formation of the d-p π back bonds. It seems that the result reported in this paper is helpful for the solution of the long-standing debate about the sulfur 3d orbital participation in bond formation.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2016JL012)Hunan Provincial Natural Science Foundation of China (No. 2019JJ20008)the Scientific Research Foundation of Qingdao University of Science and Technology (No. 1203043003457)。
文摘The development of green and convenient methods for C–S bond formation has received significant attention because C–S bond widely occurs in many important pharmaceutical and biological compounds.Recently, visible-light photoredox catalysis has been established as an efficient and general tool for the construction of C–C and C-heteroatom bonds. In this review, we have focused on the research on recent advances in C–S bond formation via visible-light photoredox catalysis, and the growing opportunities they present to the construction of complex chemical scaffolds for applications encompassing bioactive molecules synthesis, synthetic methodology development, and sulfur-containing drugs. We hope that this review will provide chemists with a synthetic tool that will open the door to further development of organsulfur chemistry.
基金Project(20971041) supported by the National Natural Science Foundation of ChinaProject(09B032) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content.
文摘A facile one-step co-precipitation method was demonstrated to fabricate amorphous sulfurcontaining calcium phosphate (SCP) nanoparticles, in which the sulfur group was in-situ introduced into calcium phosphate. The resulting SCP exhibited a noticeable enhanced performance for Pb(II) removal in comparison with hydroxyapatite (HAP), being capable of easily reducing 20 ppm of Pb(II) to below the acceptable standard for drinking water within less than 10 min. Remarkably, the saturated removal capacities of Pb(II) on SCP were as high as 1720.57 mg/g calculated by the Langmuir isotherm model, exceeding largely that of the previously reported absorbents. Significantly, SCP displayed highly selective removal ability toward Pb(II) ions in the presence of the competing metal ions (Ni(II), Co(II), Zn(II), and Cd(II)). Further investigations indicated that such ultra-high removal efficiency and preferable affinity of Pb(II) ions on SCP may be reasonably ascribed to the formation of rodlike hydroxypyromorphite crystals on the surface of SCP via dissolution-precipitation and ion exchange reactions, accompanied by the presence of lead sulfide precipitates. High removal efficiency, fast removal kinetics and excellent selectivity toward Pb(II) made the obtained SCP material an ideal candidate for Pb(II) ions decontamination in practical application.
基金the National Natural Science Foundation of China(No.51574018).
文摘Alkaline sulfur-containing lixiviants,including thiosulfate,polysulfides,and alkaline sulfide solutions,stand out as a promising class of alternatives to cyanide because of their low toxicity,high efficiency,and strong adaptability.In this paper,we summarized the research progress and remaining challenges in gold extraction using these noncyanide reagents.After a brief introduction to the preparation method,the transformation process of various sulfur-containing species in alkaline solutions was discussed.Thereafter,some insights into the mechanism of gold leaching in alkaline sulfur-containing solutions were presented from different aspects,including thermodynamics analysis,electrochemical dissolution,and leaching kinetics.Moreover,recent progress in in-situ generation of sulfur-containing anions from gold-bearing sulfide minerals was outlined as well.Gold passivation caused by sulfur species was discussed in particular because it is considered the greatest challenge facing sulfur-containing leaching systems.Alkaline sulfur-containing lixiviants are expected to serve as alternatives in industrial applications of gold extraction,particularly for refractory gold ores containing copper and carbonaceous matter.
基金Project(2013AA064102)supported by the National High Technology Research and Development Program of China
文摘In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.
文摘Four new Schiff bases of 1,10-phenanthroline-2,9-dicarboxaldehyde with sulfur-containing amines such as 2-mercaptoaniline, S-alkyl/aryl dithiocarbazates and thiosemicarbazide have been synthesized and characterized by spectroscopic and X-ray crystallographic techniques. A comparative study of the methods of synthesis has been made using both traditional and microwave techniques. A significant reduction in reaction time has been observed when the microwave method was used. In some of the reactions, the yields also increased significantly.
基金Supported by the National Natural Science Foundation of China(51204179,51204182,51674256)The Natural Science Foundation of Jiangsu Province,China(BK20141242)
文摘CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金the funding support from the National Natural Science Foundation of China(Nos.52274093 and 52004236).
文摘The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing.
基金funded by the National Natural Science Foundation of China[grant number 42075094]the China Postdoctoral Science Foundation[grant number 2021M691921]+1 种基金the Ministry of Ecology and Environment of the People’s Republic of China[grant number DQGG202121]the Dongying Ecological and Environmental Bureau[grant number 2021DFKY-0779]。
文摘The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes.
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.