The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with differen...The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.展开更多
To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at dif...To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.展开更多
The seed setting rates of total 198 rice cultivars (lines) at heading and flowering stage were investigated under the condition of extreme natural high tem- perature in 2013 so as to analyze the effect of extreme na...The seed setting rates of total 198 rice cultivars (lines) at heading and flowering stage were investigated under the condition of extreme natural high tem- perature in 2013 so as to analyze the effect of extreme natural high temperature on seed setting rate of different rice cultivar (line). The results showed that the contin- uous high temperature showed certain effects on the seed setting rates of tested materials, and significant differences were shown in seed setting rate among differ- ent rice cultivars (lines). The seed setting rates differed significantly among indica F1 hybrids derived from different sterile and restorer lines, indicating that the sterile and restorer lines had great effects on heat tolerances of different F~ hybrids. The cor- relation analysis showed that the seed setting rates of conventional indica restorer lines and conventional japonica rice cultivars (lines) were negatively related to the daily highest temperature (P〉0.05), and the seed setting rates of indica F1 hybrids were positively related to the seed setting rates of their restorer lines. Total four in- dica restorer lines, including Ninghuiguangkangzhan, Shuhui 527, Chenghui 3203 and Xianyin-8, and four new japonica rice cultivars (lines), including Wuyinjinghui (B2), Nanjing 4//W3660/Nanjing 44 (B12) and Wuyun 2330/JD6011 (B22) were pre- liminarily screened, and their seed setting rates were all close to the normal level (90%). The screened rice cultivars (lines) showed higher heat tolerances.展开更多
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste...Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.展开更多
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa...Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics ...The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg/m–3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.展开更多
In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural stren...In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.展开更多
The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- cont...The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.展开更多
The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compr...The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.展开更多
Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. ...Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. It was found that there exists approximately linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate dependence was analyzed by thermal activation theory, and dislocation climbing has been identified as the rate controlling mechanism.展开更多
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strai...The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.展开更多
The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional sol...The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.展开更多
The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temper...The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.展开更多
[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in...[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in the area along Huaihe River during 1965-2009 and the yield data of Anhui single-season middle rice during 1967-2006 were selected.The occurrence characteristic of summer high temperature weather and the intensity of high temperature damage in the area along Huaihe River were analyzed.Based on the previous high temperature damage index of rice,Changfeng County where was the typical rice planting zone in the area along Huaihe River was as the representation,and the yield damage loss rate risk of high temperature damage in Changfeng was analyzed by combining with the historical yield data.[Result] The high temperature weather in the area along Huaihe River frequently happened.The high temperature damage presented 'N' shape trend from west to east.The occurrence frequency of high temperature weather in Huainan and Bengbu where were in the middle area along Huaihe River was more and was less in Huoqiu and Shouxian where were near the south mountain area of Anhui.The occurrence time mainly focused from the middle and last dekads of July to the first dekad of August after the plum rain.At this time,it was the booting,heading and flowering periods of single-season middle rice,and the influence on the rice yield was obvious.The damage loss rate of single-season middle rice yield in Changfeng County along Huaihe River continued to increase as the increasing of high temperature damage duration.But the occurrence probability decreased.The intensity grade of high temperature damage disaster loss rate which happened frequently concentrated mainly in levels I and II.The longer the high temperature damage duration in the reproductive growth stage of rice was,the bigger the damage loss rate was.But the corresponding occurrence probability was small,and vice versa.[Conclusion] The research provided the reference for assessing the high temperature disaster risk.展开更多
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and...Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.展开更多
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the...Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.展开更多
For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH...For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH)2 to improve its high-temperature properties. The coated spherical Ni(OH)2 was prepared by chemically coprecipitation of Yb(OH)3 and Er(OH)3 on the surface of spherical Ni(OH)2, respectively. The products were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM). The X-ray analysis showed that the structure of the coated spherical Ni(OH)2 was still β-Ni(OH)2. The SEM studies revealed that coating layer uniformly covered the surface of spherical Ni(OH)2. The electrochemical studies revealed that coating of Yb(OH)3 and Er(OH)3 exhibited superior performance such as high discharge capacity, excellent charge-discharge properties at high-discharge rate at 65 ℃. The charge acceptance was above 85% at 1C rate at 65 ℃. The discharge capacity approached to 230 mAh·g-1 at 0.2C rate, which even reached 270 mAh·g-1 at 1C rate for both Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2, where the discharge capacity for uncoated one was only 250 mAh·g-1 . The cyclic voltammetry analysis of spherical Ni(OH)2 showed that the oxidation potential, the oxygen evolution potential, and the difference between them increased after the coating both at 25 and 65 ℃. It was shown that the Yb(OH)3 and Er(OH)3 coating is an effective way to improve the high-temperature performance of spherical Ni(OH)2 for Ni-MH batteries. The studies showed that Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2 would be a promising material of Ni-MH batteries for hybrid vehicle (HEVs), electric vehicles(EVs) and rapid charge devices due to excellent high rate charge-discharge performance.展开更多
基金supported by the Beijing Natural Science Foundation,China(Grant No.JQ20039)National Natural Science Foundation of China(Grant No.12172019).
文摘The dynamic spalling characteristics of rock are important for stability analysis in rock engineering.This paper presented an experimental investigation on the dynamic spalling characteristics of granite with different temperatures and strain rates.A series of dynamic spalling tests with different impact velocities were conducted on thermally treated granite at different temperatures.The dynamic spalling strengths of granite with different temperatures and strain rates were determined.A model was proposed to correlate the dynamic spalling strength of granite,high temperature and strain rate.The results show that the spalling strength of granite decreases with increasing temperature.Moreover,the spalling strength of granite with a higher strain rate is larger than that with a lower strain rate.The proposed model can describe the relationship among dynamic spalling strength of granite,high temperature and strain rate.
基金Projects(51231002,51271054,51571058,50671023)supported by the National Natural Science Foundation of China
文摘To explore the effect of strain rate ε on the high temperature deformation characteristics of ultrafine-grained materials, the deformation and damage features as well as microstructures of ECAP-treated pure Al at different temperatures T and strain ratesε were systematically studied through compression tests and microscopic observations. The increase in ε eliminates strain softening at T≤473 K, and largely enhances the yield strength and flow stress at 473?573 K. The shear deformation dominates the plastic deformation of ECAP-treated Al. Many cracks along shear bands (SBs) are formed at T≥473 K and secondary SBs basically disappear at 1×10?3 s?1; however, at 1×10?2 s?1, cracks are only observed at temperature below 473 K, and secondary SBs become clearer at T≥473 K. The microstructures of ECAP-treated Al mainly consist of sub-grains (SGs). The increase in ε inhibits the SG growth, thus leading to the increases both in yield strength and flow stress at high temperatures.
基金Supported by National Natural Science Foundation of China(31201181)Earmarked Fund for China Agriculture Research System(CARS-01-47)Project for Breeding and Demonstration of New Super Rice Varieties~~
文摘The seed setting rates of total 198 rice cultivars (lines) at heading and flowering stage were investigated under the condition of extreme natural high tem- perature in 2013 so as to analyze the effect of extreme natural high temperature on seed setting rate of different rice cultivar (line). The results showed that the contin- uous high temperature showed certain effects on the seed setting rates of tested materials, and significant differences were shown in seed setting rate among differ- ent rice cultivars (lines). The seed setting rates differed significantly among indica F1 hybrids derived from different sterile and restorer lines, indicating that the sterile and restorer lines had great effects on heat tolerances of different F~ hybrids. The cor- relation analysis showed that the seed setting rates of conventional indica restorer lines and conventional japonica rice cultivars (lines) were negatively related to the daily highest temperature (P〉0.05), and the seed setting rates of indica F1 hybrids were positively related to the seed setting rates of their restorer lines. Total four in- dica restorer lines, including Ninghuiguangkangzhan, Shuhui 527, Chenghui 3203 and Xianyin-8, and four new japonica rice cultivars (lines), including Wuyinjinghui (B2), Nanjing 4//W3660/Nanjing 44 (B12) and Wuyun 2330/JD6011 (B22) were pre- liminarily screened, and their seed setting rates were all close to the normal level (90%). The screened rice cultivars (lines) showed higher heat tolerances.
基金the support of the National Natural Science Foundation of China(Grant Nos.42030714,42177138 and 41907239).
文摘Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.
基金supported by the National Natural Science Foundation of China(Nos.52222403,52074333,52120105007)Taishan Scholar Young Expert(No.tsqn202211079)。
文摘Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
基金supported by Gansu Provincial Critical Patented Projects of China(Grant No. 1101ZSB117)Gansu Provincial Science and Technology Pillar Program of China(Grant No. 1002ZSB018)
文摘The castings defects are affected by the melting volume change rate of material. The change rate has an important effect on running safety of the high temperature thermal storage chamber, too. But the characteristics of existing measuring installations are complex structure, troublesome operation and low precision. In order to measure the melting volume change rate of material accurately and conveniently, a self-designed measuring instrument, self-heating probe instrument, and measuring method are described. Temperature in heating cavity is controlled by PID temperature controller; melting volume change rate υ and molten density are calculated based on the melt volume which is measured by the instrument. Positive and negative υ represent expansion and shrinkage of the sample volume after melting, respectively. Taking eutectic LiF+CaF2 for example, its melting volume change rate and melting density at 1 123 K are -20.6% and 2 651 kg/m–3 measured by this instrument, which is only 0.71% smaller than literature value. Density and melting volume change rate of industry pure aluminum at 973 K and analysis pure NaCl at 1 123 K are detected by the instrument too. The measure results are agreed with report values. Measuring error sources are analyzed and several improving measures are proposed. In theory, the measuring errors of the change rate and molten density which are measured by the self-designed instrument is nearly 1/20-1/50 of that measured by the refitted mandril thermal expansion instrument. The self-designed instrument and method have the advantages of simple structure, being easy to operate, extensive applicability for material, relatively high accuracy, and most importantly, temperature and sample vapor pressure have little effect on the measurement accuracy. The presented instrument and method solve the problems of complicated structure and procedures, and large measuring errors for the samples with high vapor pressure by existing installations.
文摘In this paper, the influence of loading rate and specimen height on flexural strength of Al2O3 at high temperatures has been studied by three-point bending method. The experimental results show that the flexural strength of Al2O3 decreases with increasing specimen height at room temperature, and it tends to stability when height increases to a certain degree (h=5mm in this paper), while the flexural strength of Al2O3 variates unapparently at high temperature with increasing height. There is a critical loading rate R . c. When loading rate R . is less than R . c, the flexural strength of Al2O3 increases with increasing loading rate and it drops sharply when loading rate is higher than R . c. The sensitivity of flexural strength to the loading rate decreases with elevating temperatures.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2011QNB05)the National Basic Research Program of China (No. 2007CB209400)+2 种基金the National Natural Science Foundation of China (Nos. 51074166 and 51104128)the Research Project for Ministry of Housing and Urban-Rural Development of China (No. 2011-K3-5)the Innovation Project of Graduate Students in Jiangsu Province (No. CX09B_108Z)
文摘The experimental tests for limestone specimens at 700 °C in uniaxial compression were carried out to inves- tigate the mechanical effects of loading rates on limestone by using a MTS810 rock mechanics servo- controlled testing system considering the loading rate as a variable. The mechanical properties of limestone such as the stress-strain curve, variable characteristics of peak strength and the modulus of elasticity of limestone were studied under the strain rates ranging from 1.1 10à5 to 1.1 10à1 sà1. (1) Sharp decreases were shown for the peak strength and elastic modulus of limestone from 1.1 10à5 to 1.1 10à4 sà1 at 700 °C as well as a downward trend was shown from 1.1 10à4 to 1.1 10à1 sà1 with the rise of the strain rate. (2) The peak strain increased from 1.1 10à5 to 1.1 10à4 sà1, however, there was no obvious changes shown for the peak strain of limestone from 1.1 10à4 to 1.1 10à1 sà1. These results can provide valuable references for the rock blasting effect and design of mine.
基金Funded by the National Basic Research Program of China(No.2009CB724401)the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2012ZX04003-041)
文摘The true stress-sWain relationships of Ti-5A1-2Sn-2Zr-4Mo-4Cr(TC17) alloy with a wide range of strain rates were investigated by tmiaxial quasi-static and dynamic compression tests, respectively. Quasi- static compression tests were carried out with Instron 8874 test machine, while dynamic compression tests were performed with the split Hopkinson pressure bar (SHPB) which was installed with heating device and synchro- assembly system. The dynamic mechanical behaviors tests of TC17 were carded out from room temperature to 800 ℃ at intervals of 200 ℃ and at high sWain rates (5 500-1 9200 s-l). The stress-strain curves considering temperature-sWain rate coupling actions were obtained. The Johnson-Cook constitutive model was developed through data fitting of the stress-sWain curves. The material constants in the developed constitutive model can be determined using isothermal and adiabatic stress-strain curves at different strain rates. The Johnson-Cook constitutive model provided satisfied prediction of the plastic flow stress for TC17 alloy.
文摘Tensile properties of a two phase γ Ti 47Al 1.5Cr 0.5Mn 2.8Nb alloy with a duplex microstructure were tested under strain rates ranging from 5×10 -5 to 5×10 -3 s -1 at temperatures from 1 123 K to 1 273 K. It was found that there exists approximately linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate dependence was analyzed by thermal activation theory, and dislocation climbing has been identified as the rate controlling mechanism.
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
文摘The compressive properties of the aluminum matrix composite reinforced with 55% B4C (volume fraction) particles were characterized using Gleeble 3500 thermal-mechanical testing machine. The compressive stress--strain curves were obtained at the temperature ranging from 298 to 773 K and strain rate ranging from 1×10^(-3) to 5 s ^(-1). The results showed that the dynamic compressive strength decreased more slowly than the quasi-static compressive strength at elevated temperatures, which was attributed to the different failure modes of the composite under dynamic and quasi-static load. The strain rate sensitivity increased from 0.02 to 0.13 when the temperature increased from room temperature to 773 K, suggesting that the strain rate sensitivity of this type of composite is a function of temperature.
基金financially supported by National Natural Science Foundation of China(No.50827102)the Scientific Research Foundation for Ph.D.,Northwest A&F University(No.Z109021103)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges,Northwest A&F University(No.Z109021114)the Fund of the State Key Laboratory of Solidification Processing in NWPU(No.SKLSP201220)
文摘The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm-1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s-1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ' precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ' eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.
基金supported by the National Natural Science Foundation of China(Nos.51104128,51322401,51304201 and 51204159)Jiangsu Province Prospective industry-UniversityResearch Cooperation Research Program of China(No.BY2012085)+2 种基金Doctor Station Fund of China(No.20120095110013)333 Project Program of Jiangsu Province of China"Blue Project" Program of Jiangsu Province of China
文摘The uniaxial compression tests for mudstone specimens are carried out with four different loading rates from room temperature to 400℃ by using the Rock Mechanics Servo-controlled Testing System MTS810 and high temperature furnace MTS652.02.The mechanical properties of mudstone with various loading rates are studied under different temperature conditions.The results show that when temperature increases from room temperature to 400℃ and loading rate is less than 0.03 mm/s,the peak strength of mudstone specimen decreases as loading rate increases,while the various peak strengths show significant differences when loading rate exceeds 0.03 mm/s.At room temperature,the elastic modulus decreases at the first time and then increases with loading rate rising.When the temperature is between200 and 400℃,the elastic modulus presents a decreasing trend with increasing loading rate.With increasing the loading rate,the number of fragments in mudstone becomes larger and even the powder is observed in mudstone with higher loading rate.Under high loading rate,the failure mode of mudstone specimens under different temperatures is mainly conical damage.
基金Supported by Public Welfare Industry (Meteorology) Science Research Special Item (GYHY201106027)National Science and Technology Support Plan (2011BAD16B06) .
文摘[Objective] The research aimed to study the distribution characteristics of high temperature damage and its influence on the rice yield in the area along Huaihe River.[Method] The meteorological data of 10 stations in the area along Huaihe River during 1965-2009 and the yield data of Anhui single-season middle rice during 1967-2006 were selected.The occurrence characteristic of summer high temperature weather and the intensity of high temperature damage in the area along Huaihe River were analyzed.Based on the previous high temperature damage index of rice,Changfeng County where was the typical rice planting zone in the area along Huaihe River was as the representation,and the yield damage loss rate risk of high temperature damage in Changfeng was analyzed by combining with the historical yield data.[Result] The high temperature weather in the area along Huaihe River frequently happened.The high temperature damage presented 'N' shape trend from west to east.The occurrence frequency of high temperature weather in Huainan and Bengbu where were in the middle area along Huaihe River was more and was less in Huoqiu and Shouxian where were near the south mountain area of Anhui.The occurrence time mainly focused from the middle and last dekads of July to the first dekad of August after the plum rain.At this time,it was the booting,heading and flowering periods of single-season middle rice,and the influence on the rice yield was obvious.The damage loss rate of single-season middle rice yield in Changfeng County along Huaihe River continued to increase as the increasing of high temperature damage duration.But the occurrence probability decreased.The intensity grade of high temperature damage disaster loss rate which happened frequently concentrated mainly in levels I and II.The longer the high temperature damage duration in the reproductive growth stage of rice was,the bigger the damage loss rate was.But the corresponding occurrence probability was small,and vice versa.[Conclusion] The research provided the reference for assessing the high temperature disaster risk.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.
基金Supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2012ZX07101-003-04-04)~~
文摘Seeds of Dodonaea viscosa (L.) Jacq, a representative species in dry and hot valleys in Southwest China, were chosen as experimental materials. In this experiment, the D. viscosa seeds were treated at 40, 60, 80 and 100℃ respectively before germination to study impacts of high temperature treatment on their generation rate and to further discuss the roles of fire during the process of vegetation formation in dry and hot valley areas of China. The results show that when the temperature was higher than 40 ℃, the germination rate of D. viscosa seeds was significantly higher than that of the control group, and the heat shock effect was apparent. The germination rate was the highest when the seeds were treated at 80 ℃ for 10 min, reaching 63.00%±2.55%. There was still a significant heat shock effect on the D. viscosa seeds which were stored for one year. In comparison with the conventional method of soaking seeds in hot water, the germination rate of D. viscose seeds which were treated at high temperature before germination increased significantly.
文摘Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties.
文摘For the purpose of the important high-temperature charge-discharge performances of spherical Ni(OH)2 used as positive materials for Ni-MH batteries, Yb(OH)3 and Er(OH)3 were used for surface coating of spherical Ni(OH)2 to improve its high-temperature properties. The coated spherical Ni(OH)2 was prepared by chemically coprecipitation of Yb(OH)3 and Er(OH)3 on the surface of spherical Ni(OH)2, respectively. The products were characterized by X-ray diffraction(XRD) and scanning electron microscope(SEM). The X-ray analysis showed that the structure of the coated spherical Ni(OH)2 was still β-Ni(OH)2. The SEM studies revealed that coating layer uniformly covered the surface of spherical Ni(OH)2. The electrochemical studies revealed that coating of Yb(OH)3 and Er(OH)3 exhibited superior performance such as high discharge capacity, excellent charge-discharge properties at high-discharge rate at 65 ℃. The charge acceptance was above 85% at 1C rate at 65 ℃. The discharge capacity approached to 230 mAh·g-1 at 0.2C rate, which even reached 270 mAh·g-1 at 1C rate for both Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2, where the discharge capacity for uncoated one was only 250 mAh·g-1 . The cyclic voltammetry analysis of spherical Ni(OH)2 showed that the oxidation potential, the oxygen evolution potential, and the difference between them increased after the coating both at 25 and 65 ℃. It was shown that the Yb(OH)3 and Er(OH)3 coating is an effective way to improve the high-temperature performance of spherical Ni(OH)2 for Ni-MH batteries. The studies showed that Yb(OH)3 and Er(OH)3 coated spherical Ni(OH)2 would be a promising material of Ni-MH batteries for hybrid vehicle (HEVs), electric vehicles(EVs) and rapid charge devices due to excellent high rate charge-discharge performance.