The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization meas...The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV–visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that the Kleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase of Kleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir's model, with a standard free energy of adsorption(ΔGads) of-18.62 k J/mol. The obtained results indicate that the Kleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.展开更多
A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid.Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric ac...A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid.Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively.The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value,through which the acid consumption of mortar is recorded.A theoretical reaction rate model is also proposed based on concentration boundary layer model.The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.展开更多
A laboratory study of the atmospheric corrosion of carbon steel deposited with (NH4)2SO4 in the presence of SO2 is reported. The different levels of (NH4)2SO4 (0, 15, 30, 45, 60 μg·cm-2) were added on the surfac...A laboratory study of the atmospheric corrosion of carbon steel deposited with (NH4)2SO4 in the presence of SO2 is reported. The different levels of (NH4)2SO4 (0, 15, 30, 45, 60 μg·cm-2) were added on the surface of the samples before the exposure. The corrosion was investigated by a combination of gravimetry, Fourier transform infrared spectroscope and scanning electron microscopy. A detailed knowledge about the corrosion products was acquired, both quantitatively and qualitatively. The results show that the metal loss increased and the increasing tendency of corrosion rates slowed down with the increasing exposure time. The phase constituents of the corrosion products are mainly α-FeO(OH), γ-FeO(OH), and δ-FeO(OH).展开更多
The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air q...The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air quality with consequences including the development of lung diseases in the surrounding population, the generation of acid rain and damage to civil constructions, such as public buildings, public squares, historic monuments, bridges, etc. This article describes the mechanisms of corrosion that occur in reinforced concrete deterioration observed in an industrial plant by the action of direct emissions of sulfur dioxide. SO2 in this case study is from the burning of fuel oil high sulfur content from chimney of an industrial boiler. The deterioration of concrete was evaluated in the laboratory showing the formation of calcium sulfate and calcium sulfate hydrate associated with aluminum oxide (Al2O3) and calcium oxide (CaO).展开更多
The corrosion inhibition of cold rolled steel(CRS) in 7.0 mol·L^(-1) H_2 SO_4 solution by red tetrazolium(RTZ) was carefully investigated using both experimental procedures and theoretical techniques. The results...The corrosion inhibition of cold rolled steel(CRS) in 7.0 mol·L^(-1) H_2 SO_4 solution by red tetrazolium(RTZ) was carefully investigated using both experimental procedures and theoretical techniques. The results show that RTZ acts as an effective inhibitor for the corrosion of CRS in 7.0 mol·L^(-1) H_2SO_4, and the maximum inhibition efficiency is higher than 95% with a RTZ concentration of 2.0 mmol·L^(-1). The adsorption of RTZ on CRS surface follows Langmuir isotherm. RTZ effectively retards both cathodic and anodic reactions, and acts as a mixed-type inhibitor. EIS exhibits two capacitive loops, and their resistances increase drastically in the presence of RTZ. SEM and AFM confirm that the addition of RTZ could significantly retard the corrosion of CRS surface. A series of characterizations like FTIR, RS, XRD and XPS reveal that the corrosion CRS surface is composed of the corrosion products of iron sulfates, iron oxides and iron hydroxide, as well as inhibitor. Theoretical results of quantum chemical calculation and molecular dynamics(MD) indicate that the adsorption center of RTZ+(organic cationic part of RTZ) mainly relies on its tetrazole ring,and the adsorption of RTZ+on Fe(001) surface is in a nearly flat orientation mode.展开更多
The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was ev...The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.展开更多
The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the inject...The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the injection water system was studied by the on-site materials 20#steel,Q235B steel and L316 steel for that the methanol-containing wastewater of a natural gas processing plant in northern Shaanxi had high acidity,Cl-and sulfide contents,salinity and corrosion.Then the grey system theory modeling software 3.0 was used to study the influence degree of various corrosion factors on the corrosion rate and depth of Q235B steel.The most important factors were determined,and countermeasures against corrosion were proposed.The results showed that L316 steel was more resistant to corrosion,and the corrosion rate was 0.0015 mm/a,which was less than the national standard(0.0760 mm/a).The maximum corrosion depth was 47.63μm,which was the lowest among the three materials.The corrosion rate and depth were the parent factors.Among the four factors of sulfide,Cl-,salinity and pH,grey relational degrees of sulfide were 0.75 and 0.80,respectively,which was the most important factor causing corrosion;using sulfur corrosion inhibitor protection method,TS-792C was selected by electrochemical method from three corrosion inhibitors.The impedance data simulation software ZSimpWin was used to simulate the equivalent circuit diagram,and the impedance of Q235B steel was the largest.The corrosion inhibition rate was up to 90.26%when corrosion rate was 0.0130 mm/a under the fitting of Tafel polarization curve,with the best anti-sulfur effect.At 80℃and a sulfide content of 300 mg/L,the corrosion rate of Q235B steel was less than 0.0760 mm/a.When the added amount was 100 mg/L,the corrosion current density and corrosion rate of the reinjection sewage was 0.462 mA/cm 2 and 0.0505 mm/a,both at the lowest values and with good temperature and sulfur resistance.展开更多
This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Cou...This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose- response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.展开更多
Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service li...Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service life of the regenerator checker body,the slag chemical composition and alkali-sulfur ratio of glass tanks after using petrol coke and the damage mechanism of the residual magnesia bricks in the regenerator checker body were studied,as well as the corrosion resistance of three magnesia based bricks(direct bonded magnesia chrome bricks,fused rebonded magnesia chrome bricks,and fused rebonded high-purity magnesium aluminate spinel bricks).On this basis,a series of targeted countermeasures were adopted to optimize the configuration of refractories,significantly improving the service life of checker bricks and meeting the requirements of glass industry development.展开更多
Corrsion inhibition of Aloe lateritia gel for Mild steel in 2 M HNO<sub>3</sub> and 1 M H<sub>2</sub>SO<sub>4</sub> solutions was investigated by potentiodynamic polarization, Scann...Corrsion inhibition of Aloe lateritia gel for Mild steel in 2 M HNO<sub>3</sub> and 1 M H<sub>2</sub>SO<sub>4</sub> solutions was investigated by potentiodynamic polarization, Scanning electron microscopy (SEM) and Foutier transform infrared (FT-IR). Inhibition efficiency increased with the increase of the concentration of the gel. The optimal concentration of the gel gives maximum inhibition efficiency of 77.4% and 70.3% in 1 M H<sub>2</sub>SO<sub>4</sub> and 2 M HNO<sub>3</sub> respectively. Polarization plots shows that, the gel works as a mixed type inhibitor altering both cathodic and anodic reaction. SEM proves the uniform and pitting corrosion at the surface of Mild steel in 1 M H<sub>2</sub>SO<sub>4</sub> and 2 M HNO<sub>3</sub> respectively. Using FT-IR potential function groups from pure gel and some stretch shift was observed from corrosion product and some stretch shift from corrosion products was observed.展开更多
The corrosion behaviors and mechanism of Ni-14%Cr alloys in molten salt with Na2SO4 at 1000℃ was investigated by means of XRD analysis and SEM observation. Results show that the alloys were subjected to the accelerat...The corrosion behaviors and mechanism of Ni-14%Cr alloys in molten salt with Na2SO4 at 1000℃ was investigated by means of XRD analysis and SEM observation. Results show that the alloys were subjected to the accelerated corrosion in molten salt and the corrosion kinetic of the alloy obeys the parabolic law. On the other hand, the corrosion-resistance of the alloy could be improved significantly by increasing of chromium content. Corrosion products may be divided into three layers, i. e. NiCr2O4, CoCr2O4, CoNi2S4, AlWO3 and Al2O3 granule are included in the outside of the scales, the continuous Al2O3 layer is localed in intermediate layer, and the sulfides is in the internal layer. The Cr2S3 phase in Ni-14Cr prevents the S and O from the matrix of the alloy. The morphology examinations tend to support the sulphidization-basic dissolution model previously proposed for hot corrosion mechanism.展开更多
The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surfac...The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.展开更多
Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effe...Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effects on electrode, especially for anode. In this work, six kinds of traditional materials were selected as anode, and their corrosion behaviors were examined by using electrochemistry characterization. Tafel and CV curves from simulating electrolyte suggested that their corrosion potentials were in the following order: Ni﹥C﹥SS﹥Fe﹥Cu﹥Pb–Ag. As expected, the desulfurization ratio and cell voltage from bauxite electrolysis were in the following order respectively: Cu﹥Ni﹥Fe﹥SS﹥C﹥Pb–Ag and Ni﹥Fe﹥SS﹥Cu﹥C﹥Pb–Ag. Finally, Ni was proposed a kind of excellent electrode material for bauxite desulfurization from electrolysis.展开更多
文摘The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV–visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that the Kleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase of Kleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir's model, with a standard free energy of adsorption(ΔGads) of-18.62 k J/mol. The obtained results indicate that the Kleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.
基金Funded by the National Natural Science Foundation of China(No.51078175)Natural Science Foundation of Yunnan Province (No.2008E038M)Education Foundation of Yunnan Province(No. 08Y0066)
文摘A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid.Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively.The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value,through which the acid consumption of mortar is recorded.A theoretical reaction rate model is also proposed based on concentration boundary layer model.The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.
文摘A laboratory study of the atmospheric corrosion of carbon steel deposited with (NH4)2SO4 in the presence of SO2 is reported. The different levels of (NH4)2SO4 (0, 15, 30, 45, 60 μg·cm-2) were added on the surface of the samples before the exposure. The corrosion was investigated by a combination of gravimetry, Fourier transform infrared spectroscope and scanning electron microscopy. A detailed knowledge about the corrosion products was acquired, both quantitatively and qualitatively. The results show that the metal loss increased and the increasing tendency of corrosion rates slowed down with the increasing exposure time. The phase constituents of the corrosion products are mainly α-FeO(OH), γ-FeO(OH), and δ-FeO(OH).
文摘The burning of fuel oil with high sulfur content in diverse industrial segments results in the generation of oxidized sulfur compounds (SOx). These emissions, directly or indirectly, lead to the deterioration of air quality with consequences including the development of lung diseases in the surrounding population, the generation of acid rain and damage to civil constructions, such as public buildings, public squares, historic monuments, bridges, etc. This article describes the mechanisms of corrosion that occur in reinforced concrete deterioration observed in an industrial plant by the action of direct emissions of sulfur dioxide. SO2 in this case study is from the burning of fuel oil high sulfur content from chimney of an industrial boiler. The deterioration of concrete was evaluated in the laboratory showing the formation of calcium sulfate and calcium sulfate hydrate associated with aluminum oxide (Al2O3) and calcium oxide (CaO).
基金Supported by the National Natural Science Foundation of China(51361027)the Training Program of Young and Middle Aged Academic and Technological Leaders in Yunnan Province(2015HB049)
文摘The corrosion inhibition of cold rolled steel(CRS) in 7.0 mol·L^(-1) H_2 SO_4 solution by red tetrazolium(RTZ) was carefully investigated using both experimental procedures and theoretical techniques. The results show that RTZ acts as an effective inhibitor for the corrosion of CRS in 7.0 mol·L^(-1) H_2SO_4, and the maximum inhibition efficiency is higher than 95% with a RTZ concentration of 2.0 mmol·L^(-1). The adsorption of RTZ on CRS surface follows Langmuir isotherm. RTZ effectively retards both cathodic and anodic reactions, and acts as a mixed-type inhibitor. EIS exhibits two capacitive loops, and their resistances increase drastically in the presence of RTZ. SEM and AFM confirm that the addition of RTZ could significantly retard the corrosion of CRS surface. A series of characterizations like FTIR, RS, XRD and XPS reveal that the corrosion CRS surface is composed of the corrosion products of iron sulfates, iron oxides and iron hydroxide, as well as inhibitor. Theoretical results of quantum chemical calculation and molecular dynamics(MD) indicate that the adsorption center of RTZ+(organic cationic part of RTZ) mainly relies on its tetrazole ring,and the adsorption of RTZ+on Fe(001) surface is in a nearly flat orientation mode.
基金the National Natural Science Foundation of China(No.50674022).
文摘The corrosion behavior of hot dip galvanized steel pretrvated with bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) modified with alumina particles was studied. The corrosion resistance of the passiving films was evaluated by Tafel polarization curve and electrochemical impedance spectroscopy. The films formed on the galvanized steel substrate were characterized by Fourier transform infrared spectroscopy and energy dispersive X-ray spectrometry. The surface morphology of the treated hot dip galvanized steel samples was observed by Field Emission Scanning Electron Microscope. The results show that the pretrvatments on the basis of silane films modified with nanoalumina particles have reduced both anodic and cathodic current densities, and increased total impedance in the measured frequency, consequently, improving corrosion protection for hot dip galvanized steel during immersion in NaCl solutions compared to chromate films and silane films.
文摘The research investigated the corrosion of the reinjection water system to ensure the safe production of the system.By analyzing the composition of the methanol-containing wastewater,the corrosion status of the injection water system was studied by the on-site materials 20#steel,Q235B steel and L316 steel for that the methanol-containing wastewater of a natural gas processing plant in northern Shaanxi had high acidity,Cl-and sulfide contents,salinity and corrosion.Then the grey system theory modeling software 3.0 was used to study the influence degree of various corrosion factors on the corrosion rate and depth of Q235B steel.The most important factors were determined,and countermeasures against corrosion were proposed.The results showed that L316 steel was more resistant to corrosion,and the corrosion rate was 0.0015 mm/a,which was less than the national standard(0.0760 mm/a).The maximum corrosion depth was 47.63μm,which was the lowest among the three materials.The corrosion rate and depth were the parent factors.Among the four factors of sulfide,Cl-,salinity and pH,grey relational degrees of sulfide were 0.75 and 0.80,respectively,which was the most important factor causing corrosion;using sulfur corrosion inhibitor protection method,TS-792C was selected by electrochemical method from three corrosion inhibitors.The impedance data simulation software ZSimpWin was used to simulate the equivalent circuit diagram,and the impedance of Q235B steel was the largest.The corrosion inhibition rate was up to 90.26%when corrosion rate was 0.0130 mm/a under the fitting of Tafel polarization curve,with the best anti-sulfur effect.At 80℃and a sulfide content of 300 mg/L,the corrosion rate of Q235B steel was less than 0.0760 mm/a.When the added amount was 100 mg/L,the corrosion current density and corrosion rate of the reinjection sewage was 0.462 mA/cm 2 and 0.0505 mm/a,both at the lowest values and with good temperature and sulfur resistance.
基金a corrosion subprogram of the international project Regional Air Pollution in Developing Countries under the contract No. JT73065.
文摘This paper presents the research on the atmospheric corrosion rates of carbon steel, zinc and copper in Chongqing, which was a corrosion subprogram of an international project, Regional Air Pollution in Developing Countries. We performed field exposure tests of carbon steel, zinc and copper at an urban site Guanyinqiao and a rural site Tieshanping inChongqing, then used grey relational analysis, based on the database of the whole corrosion project, to determine the order of the effect of environmental factors on corrosion rates of tested metals, and established dose-response functions for these three metals. The results showed that the two crucial agents of acidic environment, SO2 and H+, were common factors that contributed most to the corrosion of the tested metals. The established dose-response functions for outdoor carbon steel and zinc are proved applicable to use in Chongqing, but the function for copper needs further modifying. We employed these dose- response functions and general environmental data to elaborate the maps of corrosion rate respectively of carbon steel and zinc by geological information system (GIS) technique which help to identify areas of high corrosion damage risk. An acceptable annual average SO2 level of 21 μg/m3 for carbon steel and that of 61 μg/m3 for zinc are also put forward to control the air pollution impact on atmospheric corrosion in Chongqing urban areas.
文摘Replacing heavy oil with petrol coke can greatly reduce the cost of glass production,but obviously shorten the service life of refractories used in the regenerator checker body of glass tanks.To prolong the service life of the regenerator checker body,the slag chemical composition and alkali-sulfur ratio of glass tanks after using petrol coke and the damage mechanism of the residual magnesia bricks in the regenerator checker body were studied,as well as the corrosion resistance of three magnesia based bricks(direct bonded magnesia chrome bricks,fused rebonded magnesia chrome bricks,and fused rebonded high-purity magnesium aluminate spinel bricks).On this basis,a series of targeted countermeasures were adopted to optimize the configuration of refractories,significantly improving the service life of checker bricks and meeting the requirements of glass industry development.
文摘Corrsion inhibition of Aloe lateritia gel for Mild steel in 2 M HNO<sub>3</sub> and 1 M H<sub>2</sub>SO<sub>4</sub> solutions was investigated by potentiodynamic polarization, Scanning electron microscopy (SEM) and Foutier transform infrared (FT-IR). Inhibition efficiency increased with the increase of the concentration of the gel. The optimal concentration of the gel gives maximum inhibition efficiency of 77.4% and 70.3% in 1 M H<sub>2</sub>SO<sub>4</sub> and 2 M HNO<sub>3</sub> respectively. Polarization plots shows that, the gel works as a mixed type inhibitor altering both cathodic and anodic reaction. SEM proves the uniform and pitting corrosion at the surface of Mild steel in 1 M H<sub>2</sub>SO<sub>4</sub> and 2 M HNO<sub>3</sub> respectively. Using FT-IR potential function groups from pure gel and some stretch shift was observed from corrosion product and some stretch shift from corrosion products was observed.
文摘The corrosion behaviors and mechanism of Ni-14%Cr alloys in molten salt with Na2SO4 at 1000℃ was investigated by means of XRD analysis and SEM observation. Results show that the alloys were subjected to the accelerated corrosion in molten salt and the corrosion kinetic of the alloy obeys the parabolic law. On the other hand, the corrosion-resistance of the alloy could be improved significantly by increasing of chromium content. Corrosion products may be divided into three layers, i. e. NiCr2O4, CoCr2O4, CoNi2S4, AlWO3 and Al2O3 granule are included in the outside of the scales, the continuous Al2O3 layer is localed in intermediate layer, and the sulfides is in the internal layer. The Cr2S3 phase in Ni-14Cr prevents the S and O from the matrix of the alloy. The morphology examinations tend to support the sulphidization-basic dissolution model previously proposed for hot corrosion mechanism.
基金Project(42476209)supported by the National Natural Science Foundation of ChinaProject(2023GXNSFBA026252)supported by the Youth Science Foundation of Guangxi Province,China+2 种基金Project(ZR2023MD024)supported by the Natural Science Foundation of Shandong Province,ChinaProject(JC22022104)supported by the Natural Science Foundation of Nantong,ChinaProject(2023VEA0007)supported by the Chinese Academy of Sciences President’s International Fellowship Initiative。
文摘The corrosion behavior of the acidophilic sulfur-oxidizing microorganism(ASOM)Acidithiobacillusthiooxidans(A.thiooxidans)on mortar was investigated for changes of medium and mortar,as well as for weight lossand surface morphology of mortar specimens.Weight loss analysis showed that mortar weight was reduced by(15.1±2.2)%after 56 d.Morphological surface analysis of mortar specimens showed weakly structured fibrous substances with2−100μm in size.The pH variations of the mortar surface and medium indicated that biogenic sulfuric acid had beenproduced by A.thiooxidans.The results prove that A.thiooxidans accelerated concrete corrosion and caused concretefailure.
基金Supported by the Natural Science Foundation of China(51474198,51422405)
文摘Pyrite inside bauxite could be oxidized into soluble S-containing ions by electrolysis, and thus achieving bauxite desulfurization by using filtration. However, S-containing ions in electrolyte had some corrosion effects on electrode, especially for anode. In this work, six kinds of traditional materials were selected as anode, and their corrosion behaviors were examined by using electrochemistry characterization. Tafel and CV curves from simulating electrolyte suggested that their corrosion potentials were in the following order: Ni﹥C﹥SS﹥Fe﹥Cu﹥Pb–Ag. As expected, the desulfurization ratio and cell voltage from bauxite electrolysis were in the following order respectively: Cu﹥Ni﹥Fe﹥SS﹥C﹥Pb–Ag and Ni﹥Fe﹥SS﹥Cu﹥C﹥Pb–Ag. Finally, Ni was proposed a kind of excellent electrode material for bauxite desulfurization from electrolysis.