In this work the influence of aqueous sulfur passivation on the surface of n-type (100) GaSb single crystals has been studied through low-temperature photoluminescence (PL) characterization. The samples were passivate...In this work the influence of aqueous sulfur passivation on the surface of n-type (100) GaSb single crystals has been studied through low-temperature photoluminescence (PL) characterization. The samples were passivated at different times using aqueous solutions of sodium sulfide. PL spectroscopy was used to determinate the optimum time of sulfur passivation, through the measurement of the PL intensity for the different passivation times. For the samples measured, the PL spectra show the presence of two emission bands, whose intensity and energy position change for the different passivation times of the GaSb samples. According to the PL results, a passivation surface treatment of 6 min shows the highest PL intensity spectrum.展开更多
Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfOE/GaSb metal oxide semiconductor devices. Compared with control samples, the sam...Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfOE/GaSb metal oxide semiconductor devices. Compared with control samples, the samples treated with acidic (NH4)2S solution show great improvements in gate leakage current, frequency dispersion, border trap density, and interface trap density. These improvements are attributed to the enhancing passivation of the substrates, according to analysis from the perspective of chemical mechanism, X-ray photoelectron spectroscopy, and high-resolution cross-sectional transmission electron microscopy.展开更多
基金partially supported by the ICyTDF and CONACYT,México
文摘In this work the influence of aqueous sulfur passivation on the surface of n-type (100) GaSb single crystals has been studied through low-temperature photoluminescence (PL) characterization. The samples were passivated at different times using aqueous solutions of sodium sulfide. PL spectroscopy was used to determinate the optimum time of sulfur passivation, through the measurement of the PL intensity for the different passivation times. For the samples measured, the PL spectra show the presence of two emission bands, whose intensity and energy position change for the different passivation times of the GaSb samples. According to the PL results, a passivation surface treatment of 6 min shows the highest PL intensity spectrum.
基金supported by the State Key Development Program for Basic Research of China(Grant No.2011CBA00602)the Major Project of the NationalScience and Technology of China(Grant No.2011ZX02708-002)
文摘Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfOE/GaSb metal oxide semiconductor devices. Compared with control samples, the samples treated with acidic (NH4)2S solution show great improvements in gate leakage current, frequency dispersion, border trap density, and interface trap density. These improvements are attributed to the enhancing passivation of the substrates, according to analysis from the perspective of chemical mechanism, X-ray photoelectron spectroscopy, and high-resolution cross-sectional transmission electron microscopy.